CS60203: Design Optimization of Computing Systems

Optimizing the Host
Protocol Stack

Department of Computer Science
and Engineering

Sandip Chakraborty Mainack Mondal

INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Optimizations in Network Protocols

e Offloading and Acceleration

o TCP Offload Engine (TOE): Offloads TCP processing to the network interface card (NIC)

o Checksum and Segmentation Offload: NICs handle checksum calculations and
segmentation (breaking down large packets) rather than the CPU

o RDMA (Remote Direct Memory Access): Allows direct memory access between
computers over a network, bypassing the CPU and TCP/IP stack for low-latency and
high-throughput data transfer

Indian Institute of Technology Kharagpur

Optimizations in Network Protocols

e Offloading and Acceleration

o TCP Offload Engine (TOE): Offloads TCP processing to the network interface card (NIC)

o Checksum and Segmentation Offload: NICs handle checksum calculations and
segmentation (breaking down large packets) rather than the CPU

o RDMA (Remote Direct Memory Access): Allows direct memory access between
computers over a network, bypassing the CPU and TCP/IP stack for low-latency and
high-throughput data transfer

* Application Layer Optimizations
o HTTP/2 and HTTP/3 (QUIC): Flow multiplexing, use of UDP instead of TCP

o Content Caching and Delivery Network (CDN): Content is cached closer to the user in
geographically distributed locations, reducing load times and latency

Indian Institute of Technology Kharagpur

Optimizations in Network Protocols

* Packet Scheduling and Prioritization

o Fair Queuing: Ensures each connection receives an equitable share of the bandwidth,
preventing any single application from monopolizing the network

o Active Queue Management (AQM): Techniques like RED (Random Early Detection) and
CoDel (Controlled Delay) reduce latency by managing queues at network routers and
switches, preventing congestion before it builds up.

Indian Institute of Technology Kharagpur

Optimizations in Network Protocols

* Packet Scheduling and Prioritization
o Fair Queuing: Ensures each connection receives an equitable share of the bandwidth,
preventing any single application from monopolizing the network

o Active Queue Management (AQM): Techniques like RED (Random Early Detection) and
CoDel (Controlled Delay) reduce latency by managing queues at network routers and
switches, preventing congestion before it builds up.

* Latency Reduction Techniques

o Edge Computing: Processing data closer to the data source reduces latency and
offloads the core network.

* DNS Caching and Prefetching: Reduces DNS resolution time by caching responses and
prefetching likely-needed addresses.

o TCP BBR (Bottleneck Bandwidth and RTT): Adapts the TCP congestion window based on
real-time measurements of available bandwidth and round-trip time (RTT)

Indian Institute of Technology Kharagpur

TCP Offload Engine (TOE)

Improving TCP performance by offloading their functionalities to the NIC

Indian Institute of Technology Kharagpur

Offloading TCP Functionalities

e TCP processing tasks
o connection establishment
o Acknowledgment
o packet ordering
o Retransmission
o congestion control
o teardown

* CPU handles TCP processing in the traditional TCP/IP stack

o The tasks are heavy CPU intensive, particularly at high data rate

Indian Institute of Technology Kharagpur

CPU Usage by TCP

TCP processing and state update 24.0%

Connection 60.5% CPU usage breakdown
setup/ TCP connection state init/destroy 17.2%
teardown of a user-level TCP echo
Packet I/O (control packet) 10.2% server (a single 64B
L.2-L3 processing/forward 9.1% packet exchange per
Message TCP processing and state update 11.0% 0007 €ON nection)
delivery Message copy via socket buffer 8.4%
Packet I/O (data packet) 5.1%
L2-L3 processing/forward 4.5%
Socket/epoll API calls 5.6%
Timer handling and context switching 3.5%
Application logic 1.4%

) _ Source: https://www.usenix.org/system/files/nsdi20-paper-moon.pdf
Indian Institute of Technology Kharagpur

http://Sohttps:/www.usenix.org/system/files/nsdi20-paper-moon.pdf

Offloading TCP Functionalities

e TCP processing tasks
o connection establishment
o Acknowledgment
o packet ordering
o Retransmission
o congestion control
o teardown

* CPU handles TCP processing in the traditional TCP/IP stack

o The tasks are heavy CPU intensive, particularly at high data rate

* With a TOE-enabled NIC, these TCP tasks are performed directly on the NIC,
allowing the CPU to focus on application processing

Indian Institute of Technology Kharagpur

Works on TCP Offload

AccelTCP: Accelerating Network Applications FlexTOE: Flexible TCP Offload
with Stateful TCP Offloading with Fine-Grained Parallelism
YoungGyoun Moon and SeungEon Lee, KAIST: Muhammad Asim Jamshed, Intel Rajath Shashidhara, University of Washington; Tim Stamler, UT Austin;
Labs; KyoungSoo Park, KAIST Antoine Kaufmann, MPI-SWS; Simon Peter, University of Washington
https://www.usenix.org/conference/nsdi20/presentation/moon https://www.usenix.org/conference/nsdi22/presentation/shashidhara
Rearchitecting the TCP Stack for TCP Offload through Connection Handoff

1/0-Offloaded Content Delivery Hyong-youb Kim and Scott Rixner

Taehyun Kim and Deondre Martin Ng, KAIST; Junzhi Gong, Harvard University; Rice University
Youngjin Kwon, KAIST; Minlan Yu, Harvard University; KyoungSoo Park, KAIST Houston, TX 77006

https://www.usenix.org/conference/nsdi23/presentation/kim-taehyun {hykim, rixner}@rice.edu

Autonomous NIC Offloads

Boris Pismenny Haggai Eran Aviad Yehezkel
Technion and NVIDIA Technion and NVIDIA NVIDIA
Haifa, Israel Haifa, Israel Yokne’am Illit, Israel
Liran Liss Adam Morrison Dan Tsafrir
NVIDIA Tel Aviv University Technion and VMware Research

Yokne’am Illit, Israel Tel Aviv, Israel Haifa, Israel
Indian Institute of Technology Kharagpur

The Idea of TCP Offload is Not New !!

* NIC developer have thought about TCP offload long back

o TCP has been one of the heaviest protocols in the TCP/IP architecture

* However, it was not very successful !!
o Has been “a solution in search of a problem” for several decades

TCP offload 1s a dumb 1dea whose time has come

Jeffrey C. Mogul
Hewlett-Packard Laboratories
Palo Alto, CA, 94304

JeffMogul@acm.org HotOS 2023

Indian Institute of Technology Kharagpur

Why TCP Offload Was Unsuccessful in the Past?

* Processing TCP headers should not take many cycles

o Efficient methods are available, like "header prediction” by Jacobson
(https://www.freesoft.org/CIE/RFC/1323/17.htm)

* Adding a transport protocol implementation to a NIC requires considerably
more hardware complexity than a simple MAC-layer-only NIC

o TOE can become the performance bottleneck (Moore's law says CPU will continue be
faster and thus, NIC might fall behind)

* TOE interfaces needed additional bus header (to inform the NIC about the
incoming TCP packets), and thus makes the interface complex

o May introduce more overhead

Indian Institute of Technology Kharagpur

https://www.freesoft.org/CIE/RFC/1323/17.htm

Why TCP Offload Was Unsuccessful in the Past?

e The TOE must maintain connection state for each TCP connection, and must
coordinate this state with the host operating system.

o Especially for short-lived connections, any savings gained from less host involvement
in processing data packet is wasted by this extra connection management overhead.

* If the transport protocol resides in the NIC, the NIC and the host OS must
coordinate responsibility for resources such as data buffers, TCP port
numbers, etc.

o The ownership problem for TCP buffers is more complex than the seemingly
analogous problem for packet buffers, because outgoing TCP buffers must be held
until acknowledged, and received buffers sometimes must be held pending
reassembly.

Indian Institute of Technology Kharagpur

Why TCP Offload Was Unsuccessful in the Past?

* Several deployment-related issues
o Some servers must maintain huge number of connections
o Patching TOE at the NIC is much more difficult than patching the host OS kernel
o Use of TOE increases testing complexity for the hardware vendors

o Detecting the source of a bug (OS or NIC) becomes much harder (debugging hardware
is complex)

o Designing management interface is difficult — network administrators need to trace
the functionalities and often configure parameters

Indian Institute of Technology Kharagpur

Ethernet as the Storage Interconnector

e Apart from networks, computers generate high data rate on three kinds of
channels
o Graphics Systems
o Storage Systems
O Interprocessor interconnects

* Historically, these rates have been supported by special purpose interface
hardware (SCSI, Fiber Channel, etc.)

o Induces cost and reduces flexibility (becomes vendor-specific)

* However, with cheaper Gbps Ethernet the cost can be reduced, and more
flexibility can be provided in the interconnection fabrics

Indian Institute of Technology Kharagpur

Challenges with using Ethernet as the Interconnector

* Tradition network stack uses a large amount of data copy

o read() and write() -- allow applications to decide when and how data buffer appears in
their address space

* Copy overhead affects the storage performance significantly
o There are software-based approaches came up for copy-avoidance

* However, software-based copy avoidance has several issues

o If MSS < VM Page Size (which is often the case), page remapping is costly
o Needs new APIls, compatability issues with legacy OSes

* A prominent solution widely deployed: Remote Direct Memory Access
(RDMA)

Indian Institute of Technology Kharagpur

Remote Direct Memory Access (RDMA)

* Allows data to be transferred directly between the memory of two
computers over a network
o Does not involve the CPU, OS, or other components on either system

Copy
operations

\

: Server: Initiator Server: Target Server: Initiator Server: Target
;- Application G Application i@ Application
Buffer ELM S M Sockets
Transport Protocol Driver Transport Protocol Driver
NIC Driver NIC Driver \w \ NIC Driver

Network : Network

Image Source: https://www.techtarget.com/searchstorage/definition/Remote-
Direct-Memory-Access

Indian Institute of Technology Kharagpur

https://www.techtarget.com/searchstorage/definition/Remote-Direct-Memory-Access
https://www.techtarget.com/searchstorage/definition/Remote-Direct-Memory-Access

RDMA-Supported Protocols

* InfiniBand: A high-speed network

o Used in supercomputing and HPC

o Has built-in support for RDMA, providing low-latency and high-throughput
communication.

* RDMA over Converged Ethernet (RoCE): Allows RDMA to work over standard
Ethernet networks
o RoCEv1: Requires a lossless Ethernet network.

o RoCEv2: Works over regular IP networks with additional features for improved
scalability.

* {\WARP: A protocol that allows RDMA to work over standard TCP/IP networks

Indian Institute of Technology Kharagpur

NIC with RDMA

« RDMA sidesteps the problems with software-based copy-avoidance schemes

o NIC Hardware implements the RDMA protocol

o Kernel or application software registers buffer regions via the NIC driver, obtains
protected buffer reference tokens (called region IDs)

o Software exchanges these region IDs with its connection peer, via RDMA messages
sent over the transport connection

o Special RDMA message directives (“verbs”) enable a remote system to read or write
memory regions named by the region IDs

o The receiving NIC recognizes and interprets these directives, validates the region IDs,
and performs protected data transfers to or from the named regions

Indian Institute of Technology Kharagpur

NIC with RDMA

 An RDMA-enabled NIC (RNIC) needs its own implementation of all lower-
level protocols

* RDMA aims to substitute for hardware storage interfaces

o Must provide highly reliable data transfer
o Must be layered over a reliable transport such as TCP or SCTP

Indian Institute of Technology Kharagpur

NIC with RDMA

 An RDMA-enabled NIC (RNIC) needs its own implementation of all lower-
level protocols

* RDMA aims to substitute for hardware storage interfaces

o Must provide highly reliable data transfer
o Must be layered over a reliable transport such as TCP or SCTP

Offloading the transport layer becomes valuable not
for its own sake, but rather because that allows
offloading of the RDMA layer

Indian Institute of Technology Kharagpur

NIC with RDMA

 An RDMA-enabled NIC (RNIC) needs its own implementation of all lower-
level protocols

* RDMA aims to substitute for hardware storage interfaces

o Must provide highly reliable data transfer
o Must be layered over a reliable transport such as TCP or SCTP

Offloading the transport layer becomes valuable not
for its own sake, but rather because that allows
offloading of the RDMA layer

RDMA applications are likely to use a relatively small number of low-
latency, high-bandwidth transport connections, precisely the
environment where TCP offloading might be beneficial

Indian Institute of Technology Kharagpur

TOE Over RNIC Has Challenges!

* Getting Semantics Right: RDMA introduces many issues related to buffer
ownership, operation completion, and errors

o 0OS-to-RDMA Interfaces: These interfaces include, for example, buffer allocation;
mapping and protection of buffers; and handling exceptions beyond what the RNIC
can deal with (such as routing and ARP information for a new peer address).

o Applications to RDMA Interfaces: These interfaces include, for example, buffer
ownership; notification of RDMA completion events; and bidirectional interfaces to
RDMA verbs.

* Network Configuration and Management: RNICs will require IP addresses,
subnet masks, etc., and will have to report statistics for use by network
management tools.

o OS should provide a “single system image” for network management functions

Indian Institute of Technology Kharagpur

TOE Over RNIC Has Challenges!

* Defense Against Attacks: introduces several tricky problems, especially in
the area of security

o Offloading the transport protocol exacerbates the security problem by adding more
opportunities for bugs (IPSec may not be able to secure IP anymore)

o RDMA bug could be much more severe than traditional protocol-stack bugs, because it
might allow unbounded and unchecked access to host memory

Indian Institute of Technology Kharagpur

AccelTCP

AccelTCP: Accelerating Network Applications
with Stateful TCP Offloading

YoungGyoun Moon and SeungEon Lee, KAIST: Muhammad Asim Jamshed, Intel
Labs; KyoungSoo Park, KAIST

https://www.usenix.org/conference/nsdi20/presentation/moon

NSDI 2020

https://www.usenix.org/sites/default/files/conference/protected-
files/nsdi20 slides moon.pdf

Indian Institute of Technology Kharagpur

https://www.usenix.org/sites/default/files/conference/protected-files/nsdi20_slides_moon.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/nsdi20_slides_moon.pdf

The QUIC Transport Protocol

The QUIC Transport Protocol:
Design and Internet-Scale Deployment

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan
Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind,
Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev,

Wan-Teh Chang, Zhongyi Shi *
Google

quic-sigcomm @ google.com

SIGCOMM 2017

Indian Institute of Technology Kharagpur

The QUIC Stack

- D - 1
HTTP/2 HTTP/2 API ,
4 \
. y
TLS 1.2 QUIC
Y J
' N
TCP ~ £
[UDP
_ Y, y
r Y
IP
__ Yy,

https://datatracker.ietf.org/doc/html/rfc9000

Indian Institute of Technology Kharagpur

https://datatracker.ietf.org/doc/html/rfc9000

Connection Establishment in QUIC

Client Server Client Server Client Server

In Co
Choate CHLo Complete CHLO - Mplete CHLo

onse G
W‘ encrypted ooy ~Tplete CHLO
W
sHLO

SHLO

Encrypted response
Encrypted response

Initial 1-RTT Handshake Successful 0-RTT Handshake Rejected 0-RTT Handshake

Indian Institute of Technology Kharagpur

Structure of a QUIC Packet

fmmmmmmm e T YT +
| Flags (8) | Connection ID (64) (optional) | -»

e I +
e T T e +

| Version (32) (client-only, optional) | Diversification Nonce (256) | ->
e e e +

dmm e -

| Packet Number (8 - 48) | ->

R T LT T +

R e + R +

| Frame 1 | Frame 2 | | Frame N |

e T L - Fo-mmmmemmoo +

| Type (8) | Stream ID (8 - 32) | Offset (0 - 64) |
fommmmcmcmaaaa femmmcmmccccccccccacaaa- T +
e T T T T +
| Data length (@ or 16) | Stream Data (data length) |
e o mmm e eceececoooaos -+

Indian Institute of Technology Kharagpur

Some resources
related to this topic

	Slide 1: CS60203: Design Optimization of Computing Systems
	Slide 2: Optimizations in Network Protocols
	Slide 3: Optimizations in Network Protocols
	Slide 4: Optimizations in Network Protocols
	Slide 5: Optimizations in Network Protocols
	Slide 6: TCP Offload Engine (TOE)
	Slide 7: Offloading TCP Functionalities
	Slide 8: CPU Usage by TCP
	Slide 9: Offloading TCP Functionalities
	Slide 10: Works on TCP Offload
	Slide 11: The Idea of TCP Offload is Not New !!
	Slide 12: Why TCP Offload Was Unsuccessful in the Past?
	Slide 13: Why TCP Offload Was Unsuccessful in the Past?
	Slide 14: Why TCP Offload Was Unsuccessful in the Past?
	Slide 15: Ethernet as the Storage Interconnector
	Slide 16: Challenges with using Ethernet as the Interconnector
	Slide 17: Remote Direct Memory Access (RDMA)
	Slide 18: RDMA-Supported Protocols
	Slide 19: NIC with RDMA
	Slide 20: NIC with RDMA
	Slide 21: NIC with RDMA
	Slide 22: NIC with RDMA
	Slide 23: TOE Over RNIC Has Challenges!
	Slide 24: TOE Over RNIC Has Challenges!
	Slide 25: AccelTCP
	Slide 26: The QUIC Transport Protocol
	Slide 27: The QUIC Stack
	Slide 28: Connection Establishment in QUIC
	Slide 29: Structure of a QUIC Packet
	Slide 30

