
NoSQL : Not only SQL

Mainack Mondal
Sandip Chakraborty

CS 60203
Autumn 2024

Outline
• What is NoSQL?

• How is it different from SQL?

• Why do we need NoSQL?

• NoSQL Database types

• How to choose between SQL and NoSQL?

• Case Study: Amazon DynamoDB

Introduction to NoSQL

NoSQL

● Stands for “Not Only SQL”

● Basically a non-relational, schema-less and largely distributed database

● Developed in late 2000s to deal with limitations of SQL databases

Umm … What is a Distributed Database ?

Distributed Database

● Ever wondered how companies
like Amazon manage their DB?

● Basically, Database is logically
divided and distributed across
multiple computers

● All these computers are
connected in a network

Need of Distributed Databases

● Scalability

○ What if your database size exceeds 100GB?

○ Is read/write speed still same?

● Fault Tolerance and High Availability

○ What if your database system fails? Can it recover by itself ?

● Geographic Distribution

○ What if network latency increases b/w geographically distributed nodes?

NoSQL vs SQL

SQL NoSQL

Supports Relationships and Joins No support for Joins and relationships

High Maintenance Cost Low Maintenance Cost

Predefined Schema Dynamic Schema

Vertically Scalable Horizontally Scalable

Follows ACID property Does not follow ACID property

Eg: PostgreSQL, MySQL etc. Eg: Cassandra, Neo4j etc.

But … Why should you choose NoSQL?

Benefits of NoSQL
● Agility

○ SQL has a fixed data model hence, does not support agile development

○ A key principle of agile development is the ability to adapt to changing application
requirements

○ NoSQL being able to support dynamic schema, supports agile development

● Handling Unstructured Data

○ NoSQL supports dynamic Schema, hence can handle unstructured data

○ SQL needs relationship between different data to be able perform ‘Joins’

Source: Link

https://github.com/alamgirqazi/IntroToNoSQL

Benefits of NoSQL

● Scalability

○ NoSQL supports Horizontal Scaling (add more commodity servers or cloud instances)

○ SQL does not support horizontal scaling (Why?)

○ Vertical scaling requires significant additional engineering (like making joins faster)

○ Examples:

■ Games like Pokemon Go, Clash of Clans etc. stores data of millions of users

■ IoT devices:

● More than billion IoT devices are connected to the Internet

● This data is semi-structured and continuous

Benefits of NoSQL

● Auto-Sharding

○ NoSQL databases often comes with built in auto-sharding features

○ This is essential for horizontal scaling

● Polyglot Persistence

○ Means when when storing data use

multiple data storage technologies,

chosen based on the way data is used

○ Similar to Polyglot Programming

NoSQL Tradeoffs
Now, the question is what are we losing ?

● No Relationship among data ⇒ No Joins

● However, we are losing something more ⇒ consistency (What !!)

● CAP Theorem

○ Consistency: Once data is written, all future read requests will contain that data

○ Availability: The database is always available and responsive

○ Partition Tolerance: One part of the database can go down without affecting others

● This theorem says that in a distributed we can choose only 2 out C, A and P.

● NoSQL ensures availability and partition-tolerance

● However it ensures eventual consistency

Outline
• What is NoSQL?

• How is it different from SQL?

• Why do we need NoSQL?

• NoSQL Database types

• How to choose between SQL and NoSQL?

• Case Study: Amazon DynamoDB

NoSQL Database Types
4 types of NoSQL DB:

● Document Based

○ Uses collections and documents rather than tables and rows

○ Usual formats: XML, JSON, BSON

○ Use cases: CMS, blogging platforms, real-time analytics, ecommerce-applications

○ Examples: MongoDB, CouchDB, Amazon DocumentDB etc.

● Graph Based

○ Used to store information about networks of data, such as social connections

○ Examples: Neo4j, Giraph etc.

NoSQL Database Types (contd.)
● Key-Value Pairs

○ Similar to hash tables with a unique key and pointer to a data (usually BLOBs)

○ Use Case: maintaining session info, user profiles, preferences, shopping cart etc.

○ Examples: Redis, Amazon DynamoDB, Facebook’s Memcached etc.

○ Note: Avoid using K-V pairs if you want to query by data

● Column based

○ Data is arranged as columns instead of rows, with keys pointing to multiple columns

○ Supports efficient representation of sparse data

○ Designed to store and process large amounts of data distributed over many machines

○ Examples: Apache Cassandra, HBase etc.

How to choose between SQL and NoSQL?
Criteria Use Case SQL NoSQL

ACID
Compliance

Banking Systems, Inventory
Management Systems

Suitable: SQL ensures
ACID compliance

Not Suitable (No ACID
compliance)

Complex Queries Reporting, analytics, and data
manipulation

Suitable: Supports
complex queries with
JOINs

Not Suitable: Best for
simple queries and fast
lookups

Scalability Handling large amounts of
data

Not Suitable (Vertical
Scaling)

Suitable (Horizontal
Scaling)

Data
Relationships

E-commerce System:
Managing products,
categories, and customers.

Suitable Not Suitable

Data Variety Structures (ERP),
Unstructured (Big Data
Applications)

Suitable for Structured
data

Suitable for Unstructured
Data

Outline
• What is NoSQL?

• How is it different from SQL?

• Why do we need NoSQL?

• NoSQL Database types

• How to choose between SQL and NoSQL?

• Case Study: Amazon DynamoDB

Amazon DynamoDB

Let’s begin with a story:

In 2021, there was a 66-hour Amazon Prime Day shopping event

● The event generated some staggering stats:

● Trillions of API calls were made to the database by Amazon applications

● The peak load to the database reached 89 million requests per second

● The DB provided single-digit ms performance while maintaining high availability

All of this was made possible by DynamoDB

Amazon DynamoDB (contd.)

What is DynamoDB?

● Fully managed NoSQL database

● Multi-Tenant

● Flexible Schema

● Predictable Performance

● Highly Available

● Boundless Scale

source: Link

https://blog.bytebytego.com/p/a-deep-dive-into-amazon-dynamodb

DynamoDB Architecture

DynamoDB Tables

● Consists of items which is in turn a collection of attributes

● Items uniquely identified by primary key

● Schema of primary key specified at table creation

● The primary key can be a simple partition key or a composite key, or a

combination of both partition and sort keys

● Partition key determines the physical storage location of the item

● DynamoDB also supports secondary indexes to query data using alternate keys

DynamoDB Architecture (contd.)

Interface

DynamoDB Architecture (contd.)

Partitioning and Replication

A DynamoDB table is divided into multiple partitions. This provides two benefits:

● Handling more throughput as requests increase

● Store more data as the table grows

But what about the availability guarantees of these partitions?

● Each partition has multiple replicas distributed across availability zones

● Together, these replicas form a replication group and improve the partition’s

availability and durability

What are these ?

DynamoDB Architecture (contd.)

More on Replication Groups

● They consist of storage replicas containing:

○ Write-Ahead Logs (WALs)

○ B-tree that stores the key value data

● They can also contain just the WAL entries

● They are known as log replicas

DynamoDB Architecture (contd.)
An issue in Partitioning and Replication

While replicating data across multiple nodes, guaranteeing a consensus becomes

a big issue. What if each partition has a different value for a particular key?

 ⇒ DynamoDB solves it using Multi-Paxos

Key idea is as follows:

● The leader processes all write requests by generating a WAL record and sending

it to the replicas. A write is acknowledged to the application once a quorum of

replicas stores the log record to their local write-ahead logs.

● The leader also serves strongly consistent read requests. On the other hand, any

other replica can serve eventually consistent reads.

DynamoDB Architecture (contd.)
DynamoDB Request Flow

DynamoDB Architecture (contd.)
DynamoDB Request Flow

● Requests arrive at the request router service. This service is responsible for

routing each request to the appropriate storage node

● The request router first checks whether the request is valid by calling the

authentication service (AWS IAM)

● Next, the request router fetches the routing information from the metadata

service. The metadata service stores routing information about the tables,

indexes, and replication groups for keys of a given table or index

● The request router also checks the global admission control to make sure that

the request doesn’t exceed the resource limit for the table

Hot Partitions and Throughput dilation

● In the initial release, DynamoDB allowed customers to explicitly specify the

throughput requirements for a table in terms of read capacity units (RCUs) and write

capacity units (WCUs).

● As the demand from a table changed (based on size and load), it could be split into

partitions.

For eg:

● Let’s say a partition has a maximum throughput of 1000 WCUs.

● Table Capacity 3200 WCUs ⇒ 4 partitions, each of 800 WCU

● Now, if Table Capacity increases to 6000 WCUs ⇒ 8 partitions, each of 750 WCU

Hot Partitions and Throughput dilation (contd.)

● All of this was controlled by the admission control system to make sure that

storage nodes don’t become overloaded.

● However, this approach assumed a uniform distribution of throughput across all

partitions, resulting in some problems.

● Two direct consequences of this approach:

○ Hot Partitions: More traffic consistently went to a few items on the tables

rather than an even distribution

○ Throughput dilution: Splitting a partition reduces per-partition throughput, as

it is equally divided among the child partitions(in earlier example: 1000 WCU

→ 800 WCU → 750 WCU)

Hot Partitions and Throughput dilation (contd.)
Well… then how did the Amazon Engineers solved it ?

They introduced 2 main ideas to solve it:

● Bursting:

○ The idea behind bursting was to let applications tap into this unused capacity at a

partition level to absorb short-lived spikes for up to 300 seconds.

○ It’s the same as storing money in the bank from your salary each month to buy a

new car with all those savings.

● Adaptive Capacity:

○ monitors the provisioned and consumed capacity of all the tables

○ If a table experiences throttling while staying within its table-level throughput, it

automatically boosts the allocated throughput of its partitions and vice-versa

References
● Introduction to NoSQL: Link

● NoSQL Databases ~ Couchbase: Link

● DynamoDB paper: Link (Usenix ATC 2022), Link (annotated by Arpit Bhayani)

● A deep dive into DynamoDB ~ ByteByteGo: Link

● Amazon AWS DynamoDB page: Link

● Apache Cassandra: Link

● Memcached: Link

● ScyllaDB: Link

https://github.com/alamgirqazi/IntroToNoSQL
https://www.couchbase.com/resources/why-nosql/
https://www.usenix.org/system/files/atc22-elhemali.pdf
https://drive.google.com/file/d/1nA7iL9b_WLlQKhuzAV9RlgsrSrWKDsG4/view
https://blog.bytebytego.com/p/a-deep-dive-into-amazon-dynamodb
https://aws.amazon.com/dynamodb/
https://cassandra.apache.org/_/index.html
https://memcached.org/
https://www.scylladb.com/

