
Database and Optimizing Storage

Mainack Mondal
Sandip Chakraborty

CS60203
Autumn 2024



Today’s class
- Why care about a database?

- Components of a database
- Compute (query) and Storage

- Database Internals: Overview
- OLAP and OLTP databases
- Storage models
- In-database optimizations

- Performance Pitfalls
- Doing unnecessary work- ORMs, Absent or bad indexes, Layout
- Read/Write amplification



Why care about a database?



Why use a database? And not the file system?

“I want to store data to the disk”
- use a file system

“I want a performant way to store data to the disk”
- use a better file system (better may vary with use-cases)

“But I want to distribute this data across nodes!”
- use a distributed file system

So, why not just use files?



The case for the database: Need of Guarantees
Data has meaning, so you need to uphold it

- Imagine that you are building a payments app
- you store every transaction in some storage system

- So a transaction in storage system has a meaning for your application 
logic
- (eg, Ajay paid Rahul 100 bucks), just like assigning to a variable



The case for the database: Need of Guarantees
Data has meaning, so you need to uphold it

- Imagine that you are building a payments app
- you store every transaction in some storage system

- So a transaction in storage system has a meaning for your application 
logic
- (eg, Ajay paid Rahul 100 bucks), just like assigning to a variable

this system must satisfy a set of guarantees, to ensure correctness!
Atomicity, Consistency, Isolation, and Durability (ACID)



Do file system provide guarantees you need?

If so, go right ahead and use plain old files! Else use 
a database that does
Note, this is not a rhetoric, many data systems (eg, Kafka, 
Hadoop), use files extensively for most/all work



The case for the database: Using the data
Data has meaning: how you use data can help you optimize

- Imagine that you are building a payments app, you store every 
transaction in some storage system

- Need: average of amounts of all the transfers from India to Canada

What do you think is the best way to store this data on the disk?

Do you think it’ll be good to store all the amounts together or maybe all 
the data of a transaction together?



The operations you perform on stored data 
should determine how it is stored!



Today’s class
- Why care about a database?

- Components of a database
- Compute (query) and Storage

- Database Internals: Overview
- OLAP and OLTP databases
- Storage models
- In-database optimizations

- Performance Pitfalls
- Doing unnecessary work- ORMs, Absent or bad indexes, Layout
- Read/Write amplification



Components of a database



What is a database?

Storage

Client Interface

Optimizer

Query Execution

Compute



Interface

Interface can be anything!
JSON for MongoDB, or SQL on S3 using REST API



Optimizer and Query Execution

Optimizer is necessary for 
declarative client interfaces (like 
SQL), and it’s job is to 
formulate an optimized 
execution plan 

Query execution is the actual 
computation of the query result



Optimizer and Query Execution



Storage

Recent times: lot of innovation 
in the domain of storage 

Some systems leverage object 
stores for durable storage

Others are scaling storage by 
distributing it



Storage



Today’s class
- Why care about a database?

- Components of a database
- Compute (query) and Storage

- Database Internals: Overview
- OLAP and OLTP databases
- Storage models
- In-database optimizations

- Performance Pitfalls
- Doing unnecessary work- ORMs, Absent or bad indexes, Layout
- Read/Write amplification



Database Internals



The OLAP/OLTP Classification

- Database implementation depends the application it is geared 
towards (i.e. the kind of guarantees, and queries to be supported)

- storage and compute are implemented (and optimized) for the same

- A very popular way to divide is between transactional databases 
(OLTP), and analytics databases (OLAP)



Online Transactional Processing (OLTP) databases are used to 
implement “transactions” to support application logic

- In-general they allow all operations like READ, INSERT, UPDATE, 
and DELETE

- Strong guarantees (like ACID) are usually a necessity for 
correctness

- Traditionally most transactional databases have been relational (i.e. 
SQL based), for example PostgreSQL, MySQL

The OLTP Database 



Online Analytical Processing (OLAP) databases are used to answer 
analytical queries over data

- OLAP databases are optimized for large scale READs, and 
aggregation based queries

- In general strong guarantees are not necessary, especially not for 
“ALL” operations. This relaxation can give very strong performance 
upsides!

- Interestingly, SQL is also a commonly used client interface for 
these, (eg, Clickhouse)

The OLAP Database



Before we go into the internals we will look at 
PostgreSQL as an example of how a database 
is organised

Following slides will cover background on Postgres



A PostgreSQL server/cluster manages data in multiple “databases”. Each 
database contains tables, views and other objects. This is analogous to 
hierarchical organization in a file system.

PosgtreSQL contains 3 identical databases on startup

template0 is used for cases like restoring data from a logical backup or 
creating a database with a different encoding; it must never be modified

template1 serves as a template for all the other databases that a user can 
create in the cluster

postgres is a regular database that you can use at your discretion

PostgreSQL: Broad Overview



- Metadata of all cluster objects (such as tables, indexes, data types, or 
functions) is stored in tables that belong to the system catalog. 

- Each database has its own set of tables (and views) that describe the 
objects of this database. 

- Several system catalog tables are common to the whole cluster 
(technically, a dummy database with a zero is used), but can be accessed 
from all of them.

PostgreSQL: System Catalogs



- The system catalog can be viewed using regular queries, while all 
modifications in it are performed by DDL commands 

- The psql client also offers commands for this

- Names of all system catalog tables begin with pg_, like in pg_database

- Column names start with a three-letter prefix that usually corresponds to 
the table name, like in datname

PostgreSQL: System Catalogs



Schemas are namespaces that store all objects of a database. Apart 
from user schemas, PostgreSQL offers several predefined ones: 

public is the default schema for user objects unless other settings are 
specified.

pg_catalog is used for system catalog tables. 
(information_schema provides an alternative view for the system catalog)

pg_toast is used for objects related to TOAST

pg_temp comprises temporary tables

PostgreSQL: Schemas (Namespaces)



Database Internals: Storage Models! 
(slide illustrations- CMU Advanced Database Systems)



- The DBMS stores (almost) all the attributes for a single tuple 
contiguously in a single page.

- Ideal for OLTP workloads where transactions tend to access 
individual entities and insert-heavy workloads.
→ Use the tuple-at-a-time iterator processing model.

- NSM database page sizes are typically some constant multiple of 4 
KB hardware pages.
→ Example: Oracle (4 KB), Postgres (8 KB), MySQL (16 KB)

N-ary storage model (Row based storage)



A disk-oriented NSM system stores a tuple's fixed-length and variable- 
length attributes contiguously in a single slotted page. The tuple's record 
id (page#, slot#) is how the DBMS uniquely identifies a physical tuple.

N-ary storage model (NSM): Physical Layout



- Databases and schemas determine 
logical distribution of objects, while 
tablespaces define physical data layout. 

- A tablespace is implemented as a 
directory in a file system.

- You can distribute your data between 
tablespaces in such a way that archive 
data is stored on slow disks, while the 
data that is being actively updated goes 
to fast disks.

N-ary storage in PostgreSQL



- One and the same tablespace can be used by different databases, and 
each database can store data in several tablespaces. 

- It means that logical structure and physical data layout do not depend on 
each other.

- Each database has the so-called default tablespace. All database objects 
are created in this tablespace unless another location is specified. System 
catalog objects related to this database are also stored there.

We have seen the tablespace organization at the directory level. Now we 
will look at how tables, and indexes are stored using files!

Tablespaces in PostgreSQL



- Each table and index is stored in a separate file. For ordinary relations, 
these files are named after the table or index's file-node number, which 
can be found in pg_class.relfilenode

- Each table and index has a free space map, which stores information 
about free space available in the relation. The free space map is stored in a 
file named with the filenode number plus the suffix _fsm

- Tables also have a visibility map, stored in a fork with the suffix _vm, to 
track which pages are known to have no dead tuples. The visibility map

Now we will look at the page layout!

File level layout



- By design, Postgres allows multiple tuples in a page, but one tuple must 
not exceed a page! (we look at how a page is arranged shortly)

- To accommodate cases like this, Postgres uses a mechanism called 
TOAST (The Oversized Attributes Storage Technique)

- TOAST Strategies:
- Move long attribute values into a separate service table, having sliced 

them into smaller “toasts.” 
- compress a long value in such a way that the row fits the page. 
- Or you can do both: first compress the value, and then slice and move

Tuple arrangement in file pages



- If the main table contains potentially long attributes, a separate table is 
created for it right away, one for all the attributes. 

- For example, if a table has a column of the numeric or text type, a table 
will be created even if this column will never store any long values.

- For indexes, the mechanism can offer only compression; moving long 
attributes into a separate table is not supported. It limits the size of the 
keys that can be indexed

- Simplest way to review the used strategies is to run the \d+ command 
in psql

TOAST and Potential Pitfalls



The first table 
details the page 
layout

And the second 
table details the 
page metadata 
stored

Page level layout



And that is how N-ary storage works!

Rest is essentially ACID guarantees, and indexes like 
B-Trees you have studied in your Database course :)



- Fast INSERT, UPDATES, and DELETES to support transactions

- Good for queries that need the entire tuple

- Allows for strong guarantees (required for OLTP) on the level of a 
single record

- Can use index-oriented physical storage for clustering to improve 
performance

N-ary storage model: Advantages



- Not good for scanning large portions of the table and/or a subset of 
the attributes (eg, aggregating a column).

- Terrible memory locality in access patterns. This is fine as long as we 
don’t need to scale reads.

- Not ideal for compression because of multiple value domains within a 
single page. Compression algorithms work (much) better when type 
information is available (and different algorithms can be used for 
different columns)

N-ary storage model: Disadvantages



- The DBMS stores a single attribute (column) for all tuples 
contiguously in a block of data.

- Ideal for OLAP workloads where read-only queries perform large 
scans over a subset of the table’s attributes.
→ Use a batched vectorized processing model.

- File sizes are larger (100s of MBs), but it may still organize tuples 
within the file into smaller groups.

Decomposition Storage Model (DSM, Column based)



- Store attributes and metadata (e.g., nulls) in separate arrays of 
fixed- length values.
→ Most systems identify unique physical tuples using offsets into 
these arrays.

- To handle variable-length values we can maintain a separate file 
per attribute with a dedicated header area for metadata about entire 
column.

Decomposition Storage Model: Physical Layout



Decomposition Storage Model: Physical Layout



Decomposition Storage Model: Tuple Identification

- Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.

- Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.



Advantages
- Reduces the amount wasted I/O per query because the DBMS 

only reads the data that it needs.
- Faster query processing because of increased locality and cached 

data reuse.
- Better data compression (more on this later)

Disadvantages
- Slow for point queries, inserts, updates, and deletes because of 

tuple splitting/stitching/reorganization.

Decomposition Storage Model: Advantages/Disadvantages



- Partition Attributes Across (PAX) is a hybrid storage model that 
vertically partitions attributes within a database page.
→ This is what Paraquet and Orc use.

- The goal is to get the benefit of faster processing on columnar 
storage while retaining the spatial locality benefits of row storage.

Just for reference: PAX Storage Model



Database Internals: Indexes, and other optimizations
(slide illustrations- CMU Advanced Database Systems)



Storage Optimizations

- We can of course optimize storage throughput/latency/reliability by 
distributing a database

- Or by introducing external caching/query coalescing services 
(Redis, or response caching or middlewares). 

- We will cover this in later lectures! For now we discuss in-database 
optimizations that are present in many databases 



In-database Design-choices and Optimizations

- Buffer management (we are skipping this)

- Transparent Huge-pages

- Numeric representation

- NULL representation

- OLAP Indexes



Huge-pages: Motivation

- TLBs are pretty small because they need to be fast. 

AMD's Zen 4 Microarchitecture, which first shipped in September 2022, 
has a first level data TLB with 72 entries, and a second level TLB 
with 3072 entries. 

- That means avoiding page-table lookups is hard!

In Zen 4 when an application's working set is larger than 
approximately 4 kiB × 3072 = 12 MiB, some memory accesses will 
require page table lookups, 



Huge-pages: Motivation

- TLBs are pretty small because they need to be fast. 

- That means avoiding page-table lookups is hard!

Larger virtual memory page sizes (aka huge pages) can 
reduce page mapping overhead substantially.



Transparent Huge-pages

Instead of always allocating memory in 4 KB pages, Linux supports 
creating larger pages (2MB to 1GB)
→ Each page must be a contiguous blocks of memory.
→ Greatly reduces the # of TLB entries

With THP, the OS reorganizes pages in the background to keep things 
compact.
→ Split larger pages into smaller pages.
→ Combine smaller pages into larger pages.
→ Can cause the DBMS process to stall on memory access.



Issues with Transparent Huge-pages

Transparency has a cost! Given that a page has to be in contiguous 
memory, creating huge-pages requires memory defragmentation, this 
has added latency and processing overhead

Historically, every DBMS advises you to disable this THP on Linux:
→ Oracle, SingleStore, NuoDB, MongoDB, Sybase, TiDB.
→ Vertica says to enable THP only for newer Linux distros.

But in many cases huge pages (transparent or otherwise) 
have improved performance, so always measure!



In-database Design-choices and Optimizations

- Buffer management (we are skipping this)

- Transparent Huge-pages

- Numeric representation

- NULL representation

- OLAP Indexes



Numeric representation: Variable Precision

- Inexact, variable-precision numeric type that uses the "native" C/C++ 
types. Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

- These types are typically faster than fixed precision numbers because 
CPU ISA's (Xeon, Arm) have instructions / registers to support them. 
But they do not guarantee exact values



Numeric representation: 
Fixed Precision

Arbitrary precision is inefficient!
Definition of Postgres numeric is below
To the side you see (part of) code to add 2 
Postgres numerics!



Numeric representation: Fixed Precision 

- Use (only) when rounding errors 
are literally unacceptable! Use 
variable precision (floating 
point) instead

- Implementation generally uses a 
variable length binary 
representation with additional 
metadata

- People have tried optimizations!



In-database Design-choices and Optimizations

- Buffer management (we are skipping this)

- Transparent Huge-pages

- Numeric representation

- NULL representation

- OLAP Indexes



Representing NULLs!

Choice #1: Special Values
→ Designate a value to represent NULL for a data type (e.g., INT32_MIN).

Choice #2: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what attributes are 
null.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this messes up 
with word alignment.


