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Today’s class
- Why care about a database?

- Components of a database
- Compute (query) and Storage

- Database Internals: Overview
- OLAP and OLTP databases
- Storage models
- In-database optimizations

- Performance Pitfalls
- Doing unnecessary work- ORMSs, Absent or bad indexes, Layout
- Read/Write amplification



Why care about a database?



Why use a database? And not the file system?

“l want to store data to the disk”
- use a file system

“l want a performant way to store data to the disk”
- use a better file system (better may vary with use-cases)

“But | want to distribute this data across nodes!”
- use a distributed file system

So, why not just use files?



The case for the database: Need of Guarantees

Data has meaning, so you need to uphold it

- Imagine that you are building a payments app
- you store every transaction in some storage system

- S0 a transaction in storage system has a meaning for your application
logic
- (eg, Ajay paid Rahul 100 bucks), just like assigning to a variable



The case for the database: Need of Guarantees

Data has meaning, so you need to uphold it

- Imagine that you are building a payments app
- you store every transaction in some storage system

- S0 a transaction in storage system has a meaning for your application
logic
- (eg, Ajay paid Rahul 100 bucks), just like assigning to a variable

this system must satisfy a set of guarantees, to ensure correctness!
Atomicity, Consistency, Isolation, and Durability (ACID)



Do file system provide guarantees you need?

If so, go right ahead and use plain old files! Else use
a database that does

Note, this is not a rhetoric, many data systems (eq, Karka,
Hadoop), use files extensively for most/all work



The case for the database: Using the data

Data has meaning: how you use data can help you optimize

- Imagine that you are building a payments app, you store every
transaction in some storage system

- Need: average of amounts of all the transfers from India to Canada

What do you think is the best way to store this data on the disk?

Do you think it’ll be good to store all the amounts together or maybe all
the data of a transaction together?



The operations you perform on stored data
should determine how it is stored!
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Components of a database



What /s a database?

Client Interface

Compute Optimizer
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async function run() {
EEy
await client.connect();

// set namespace
const database = client.db("sample_airbnb");

const coll = database.collection("listingsAndRevieuws");

// define pipeline
const agg = [
{
'$search': {
'index': 'geo-json-tutorial’',
"compound': {
'must': [
{
'geoWithin': {
'geometry': {
'"type': 'Polygon',
'coordinates': [

=

Interface can lbe anything!
JSON for MongoDB, or SQL on S3 using REST AP

Filtering and retrieving data using Amazon S3 Select

PDF | RSS

/A Important

Amazon S3 Select is no longer available to new customers. Existing customers of Amazon S3 Select can continue to use the feature as usual.
Learn more[&

With Amazon S3 Select, you can use structured query language (SQL) statements to filter the contents of an Amazon S3 object and retrieve only the
subset of data that you need. By using Amazon S3 Select to filter this data, you can reduce the amount of data that Amazon S3 transfers, which reduces
the cost and latency to retrieve this data.

Amazon S3 Select only allows you to query one object at a time. It works on an object stored in CSV, JSON, or Apache Parquet format. It also works with
an object that is compressed with GZIP or BZIP2 (for CSV and JSON objects only), and a server-side encrypted object. You can specify the format of the
results as either CSV or JSON, and you can determine how the records in the result are delimited.




Optimizer and Query Execution

Compute

Client Interface

Optimizer

Query Execution

Optimizer is necessary for
declarative client interfaces (like
SQL), and it’s job is to
formulate an optimized
execution plan

Query execution is the actual
computation of the query result



Optimizer and Query Execution
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ABSTRACT

Apache Calcite is a foundational software framework that provides
query processing, optimization, and query language support to
many popular open-source data processing systems such as Apache
Hive, Apache Storm, Apache Flink, Druid, and MapD. The goal of
this paper is to formally introduce Calcite to the broader research
community, briefly present its history, and describe its architecture,
features, functionality, and patterns for adoption. Calcite’s archi-
tecture consists of a modular and extensible query optimizer with
hundreds of built-in optimization rules, a query processor capable of
processing a variety of query languages, an adapter architecture de-
signed for extensibility, and support for heterogeneous data models
and stores (relational, semi-structured, streaming, and geospatial).
This flexible, embeddable, and extensible architecture is what makes
Calcite an attractive choice for adoption in big-data frameworks. It
is an active project that continues to introduce support for the new
types of data sources, query languages, and approaches to query
processing and optimization.

Jestis Camacho-Rodriguez
Hortonworks Inc.
Santa Clara, California, USA
jcamacho@hortonworks.com

Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources

Julian Hyde
Hortonworks Inc.
Santa Clara, California, USA
jhyde@hortonworks.com

Daniel Lemire
University of Quebec (TELUQ)
Montreal, Quebec, Canada
lemire@gmail.com

Optimized Query Processing Over Heterogeneous Data Sources. In SIG-
MOD’18: 2018 International Conference on Management of Data, June 10—
15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3183713.3190662

1 INTRODUCTION

Following the seminal System R, conventional relational database
engines dominated the data processing landscape. Yet, as far back as
2005, Stonebraker and Cetintemel [49] predicted that we would see
the rise a collection of specialized engines such as column stores,
stream processing engines, text search engines, and so forth. They
argued that specialized engines can offer more cost-effective per-
formance and that they would bring the end of the “one size fits
all” paradigm. Their vision seems today more relevant than ever.
Indeed, many specialized open-source data systems have since be-
come popular such as Storm [50] and Flink [16] (stream processing),
Elasticsearch [15] (text search), Apache Spark [47], Druid [14], etc.

As organizations have invested in data processing systems tai-




Storage

Recent times:; |ot of innovation
iNn the domain of storage

Client Interface

Compute ; Optimizer

Some systems leverage object
stores for durable storage

Query Execution

Others are scaling storage by
distributing it
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Database Internals



The OLAP/OLTP Classification

- Database implementation depends the application it is geared
towards (i.e. the kind of guarantees, and queries to be supported)

- storage and compute are implemented (and optimized) for the same

- A very popular way to divide is between transactional databases
(OLTP), and analytics databases (OLAP)



The OLTP Database

Online Transactional Processing (OLTP) databases are used to
implement “transactions” to support application logic

- In-general they allow all operations like READ, INSERT, UPDATE,
and DELETE

- Strong guarantees (like ACID) are usually a necessity for
correctness

- Traditionally most transactional databases have been relational (i.e.
SQL based), for example PostgreSQL, MySQL



The OLAP Database

Online Analytical Processing (OLAP) databases are used to answer
analytical queries over data

- OLAP databases are optimized for large scale READs, and
aggregation lbased queries

- In general strong guarantees are not necessary, especially not for
"“ALL" operations. This relaxation can give very strong performance
upsides!

- Interestingly, SQL is also a commonly used client interface for
these, (eg, Clickhouse)



Before we go into the internals we will look at
PostgreSQL as an example of how a database
IS organised

Following slides will cover background on Postgres



PostgreSQL: Broad Overview

A PostgreSQL server/cluster manages data in multiple “databases”. Each

database contains tables, views and other objects. This is analogous to
hierarchical organization in a file system.

PosgtreSQL contains 3 identical databases on startup

templateO is used for cases like restoring data from a logical backup or
creating a database with a different encoding; it must never be modified

template1 serves as a template for all the other databases that a user can
create in the cluster

postgres is a regular database that you can use at your discretion



PostgreSQL: System Catalogs

- Metadata of all cluster objects (such as tables, indexes, data types, or
functions) is stored in tables that belong to the system catalog.

- Each database has its own set of tables (and views) that describe the
objects of this database.

- Several system catalog tables are common to the whole cluster
(technically, a dummy database with a zero is used), but can be accessed
from all of them.



PostgreSQL: System Catalogs

The system catalog can be viewed using regular queries, while all
modifications in it are performed by DDL commands

The psql client also offers commands for this

Names of all system catalog tables begin with pg_, like in pg_database

Column names start with a three-letter prefix that usually corresponds to
the table name, like in datname



PostgreSQL: Schemas (Namespaces)

Schemas are namespaces that store all objects of a database. Apart
from user schemas, PostgreSQL offers several predefined ones:

public is the default schema for user objects unless other settings are
specified.

pg_catalog is used for system catalog tables.
(information_schema provides an alternative view for the system catalog)

pg_toast is used for objects related to TOAST

pg_temp comprises temporary tables



Database Internals: Storage Models!
(slide illustrations- CMU Advanced Database Systems)



N-ary storage model (Row based storage)

- The DBMS stores (almost) all the attributes for a single tuple
contiguously in a single page.

- |deal for OLTP workloads where transactions tend to access
iIndividual entities and insert-heavy workloads.
— Use the tuple-at-a-time iterator processing model.

- NSM database page sizes are typically some constant multiple of 4
KB hardware pages.

— Example: Oracle (4 KB), Postgres (8 KB), MySQL (16 KB)



N-ary storage model (NSM): Physical Layout

A disk-oriented NSM system stores a tuple's fixed-length and variable-
length attributes contiguously in a single slotted page. The tuple's record
id (page#, slot#) is how the DBMS uniquely identifies a physical tuple.
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N-ary storage in PostgreSQL

- Databases and schemas determine

logical distribution of objects, while s
tablespaces define physical data layout.

- A tablespace is implemented as a

directory in a file system. (e = || <

(o w ) ==

- You can distribute your data between | e ||
tablespaces in such a way that archive —_—

data is stored on slow disks, while the
data that is being actively updated goes
to fast disks.

postgres




Tablespaces in PostgreSQL

- One and the same tablespace can be used by different databases, and
each datalbase can store data in several tablespaces.

- It means that logical structure and physical data layout do not depend on
each other.

- Each database has the so-called default tablespace. All database objects
are created in this tablespace unless another location is specified. System
catalog objects related to this database are also stored there.

We have seen the tablespace organization at the directory level. Now we
will look at how tables, and indexes are stored using files!



File level layout

- Each table and index is stored in a separate file. For ordinary relations,
these files are named after the table or index's file-node number, which
can be found in pg_class.relfilenode

- Each table and index has a free space map, which stores information
about free space available in the relation. The free space map is stored in a
file named with the filenode number plus the suffix _fsm

- Tables also have a visibility map, stored in a fork with the suffix _vm, to
track which pages are known to have no dead tuples. The visibility map

Now we will look at the page layout!



Tuple arrangement in file pages

- By design, Postgres allows multiple tuples in a page, but one tuple must
not exceed a page! (we look at how a page is arranged shortly)

- To accommodate cases like this, Postgres uses a mechanism called
TOAST (The Oversized Attributes Storage Technique)

- TOAST Strategies:
- Move long attribute values into a separate service table, having sliced

them into smaller “toasts.”
- compress a long value in such a way that the row fits the page.
- Or you can do both: first compress the value, and then slice and move



TOAST and Potential Pitfalls

If the main table contains potentially long attributes, a separate table is
created for it right away, one for all the attributes.

For example, If a table has a column of the numeric or text type, a table
will be created even if this column will never store any long values.

For indexes, the mechanism can offer only compression; moving long
attributes into a separate table is not supported. It limits the size of the
keys that can be indexed

Simplest way to review the used strategies is to run the \d+ command
in psql



Page level layout

Item Description

PageHeaderData | 24 bytes long. Contains general information about the page, including free space pointers.

ItemldData Array of item identifiers pointing to the actual items. Each entry is an (offset,length) pair. 4 bytes per item.
Free space The unallocated space. New item identifiers are allocated from the start of this area, new items from the end.
Items The actual items themselves.

Special space

Index access method specific data. Different methods store different data. Empty in ordinary tables.

Field Type Length Description

pd_Isn PageXLogRecPtr | 8 bytes LSN: next byte after last byte of WAL record for last change to this page
pd_checksum uint16 2 bytes Page checksum

pd_flags uint16 2 bytes Flag bits

pd_lower Locationindex |2 bytes Offset to start of free space

pd_upper Locationindex | 2 bytes Offset to end of free space

pd_special Locationindex |2 bytes Offset to start of special space

pd_pagesize_version  uint16 2 bytes Page size and layout version number information

pd_prune_xid Transactionld |4 bytes Oldest unpruned XMAX on page, or zero if none

The first table
details the page
layout

And the second
table details the
page metadata
stored



And that is how N-ary storage works!

Rest is essentially ACID guarantees, and indexes like
B-Trees you have studied in your Database course :)



N-ary storage model: Advantages

Fast INSERT, UPDATES, and DELETES to support transactions
- Good for queries that need the entire tuple

- Allows for strong guarantees (required for OLTP) on the level of a
single record

- Can use index-oriented physical storage for clustering to improve
performance



N-ary storage model: Disadvantages

- Not good for scanning large portions of the table and/or a subset of
the attributes (eg, aggregating a column).

- Terrible memory locality in access patterns. This is fine as long as we
don’t need to scale reads.

- Not ideal for compression because of multiple value domains within a
single page. Compression algorithms work (much) better when type
information is available (and different algorithms can be used for
different columns)



Decomposition Storage Model (DSM, Column based)

- The DBMS stores a single attribute (column) for all tuples
contiguously in a block of data.

- ldeal for OLAP workloads where read-only queries perform large
scans over a subset of the table’s attributes.
— Use a batched vectorized processing model.

- File sizes are larger (100s of MBs), but it may still organize tuples
within the file into smaller groups.



Decomposition Storage Model: Physical Layout

- Store attributes and metadata (e.g., nulls) in separate arrays of
fixed- length values.
— Most systems identity unique physical tuples using offsets into
these arrays.

- To handle variable-length values we can maintain a separate file
per attribute with a dedicated header area for metadata about entire
column.



Decomposition Storage Model: Physical Layout
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Decomposition Storage Model: Tuple Identification

- Choice #1: Fixed-length Offsets
— Each value is the same length for an attribute.

- Choice #2: Embedded Tuple Ids
— Each value is stored with its tuple id in a column.

Offsets Embedded Ids
s §cfo B 0
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3




Decomposition Storage Model: Advantages/Disadvantages

Advantages
- Reduces the amount wasted 1/0 per query because the DBMS

only reads the data that it needs.
- Faster query processing because of increased locality and cached

data reuse.
- Better data compression (more on this later)

Disadvantages
- Slow for point queries, inserts, updates, and deletes because of

tuple splitting/stitching/reorganization.



Just for reference: PAX Storage Model

- Partition Attributes Across (PAX) is a hybrid storage model that
vertically partitions attributes within a database page.
— This is what Paraquet and Orc use.

- The goal is to get the benefit of faster processing on columnar
storage while retaining the spatial locality benefits of row storage.



Database Internals: Indexes, and other optimizations
(slide illustrations- CMU Advanced Database Systems)



Storage Optimizations

- We can of course optimize storage throughput/latency/reliability by
distributing a database

- Or by introducing external caching/query coalescing services
(Redis, or response caching or middlewares).

- We will cover this in later lectures! For now we discuss in-database
optimizations that are present in many databases



In-database Design-choices and Optimizations

Transparent Huge-pages
- Numeric representation
- NULL representation

- OLAP Indexes



Huge-pages: Motivation

- TLBs are pretty small because they need to be fast.

AMD's Zen 4 Microarchitecture, which first shipped in September 2022,
has a first level data TLB with 72 entries, and a second level TLB
with 3072 entries.

- That means avoiding page-table lookups is hard!
In Zen 4 when an application’'s working set is larger than

approximately 4 kiB x 3072 = 12 MiB, some memory accesses will
require page table lookups,



Huge-pages: Motivation

- TLBs are pretty small because they need to be fast.

- That means avoiding page-table lookups is hard!

Larger virtual memory page sizes (aka huge pages) can
reduce page mapping overhead substantially.



Transparent Huge-pages

Instead of always allocating memory in 4 KB pages, Linux supports
creating larger pages (2MB to 1GB)

— Each page must be a contiguous blocks of memory.

— Greatly reduces the # of TLB entries

With THP, the OS reorganizes pages in the background to keep things
compact.

— Split larger pages into smaller pages.

— Combine smaller pages into larger pages.

— Can cause the DBMS process to stall on memory access.



Issues with Transparent Huge-pages

Transparency has a cost! Given that a page has to be in contiguous
memory, creating huge-pages requires memory defragmentation, this
has added latency and processing overhead

Historically, every DBMS advises you to disable this THP on Linux:
— Oracle, SingleStore, NuoDB, MongoDB, Sybase, TIiDB.
— Vertica says to enable THP only for newer Linux distros.

But in many cases huge pages (transparent or otherwise)
have improved performance, so always measure!



In-database Design-choices and Optimizations

- Numeric representation
- NULL representation

- OLAP Indexes



Numeric representation: Variable Precision

- Inexact, variable-precision numeric type that uses the "native" C/C++
types. Store directly as specified by IEEE-754.
— Example: FLOAT, REAL/DOUBLE

- These types are typically faster than fixed precision numlbers because
CPU ISA's (Xeon, Arm) have instructions / registers to support them.
But they do not guarantee exact values



add_var() -

* ok Kk * F

Full version of add functionality on variable level (handling signs).

N u meriC representation : * Tesult might point to one of the operands too without danger:

7
int
PGTYPESnumeric_add(numeric *varl, numeric *var2, numeric *result)

Fixed Precision i

* Decide on the signs of the two variables what to do
*/

if (varl->sign == NUMERIC_POS)

{

if (var2->sign == NUMERIC_POS)

Arbitrary precision is inefficient! e

* Both are positive result = +(ABS(varl) + ABS(var2))
%/

Definition of Postgres numeric is below e, oo, i
To the side you see (part of) code to add 2 fise
PO S .t g r- e S n Ume r- j_ CS! :/varl is positive, var2 is negative Must compare absolute values

switch (cmp_abs(varl, var2))

* ABS(varl) == ABS(var2)
* result = ZERO

*7

zero_var(result);
result->rscale = Max(varl->rscale, var2->rscale);

& 2 result->dscale = Max(varl->dscale, var2->dscale);
# Of DlgltS break;

typedef unsigned char NumericDigit;

typedef struct {

* ABS(varl) > ABS(var2)
* result = +(ABS(varl) - ABS(var2))
*

Weight of 1°* Digit

. . . */
int ndlglts; if (sub_abs(varl, var2, result) != Q)
return _1i .
Scale Factor «Qemmmle. iNt Wep e TR

ok

o 5 . . 5 if (sub_abs(var2, varl, result) != 0)
NumericDigit| *digits; return -1;

result->sign = NUMERIC_NEG;
} numeric; }

int sdale; e
.. . / * ABS(varl) < ABS(var2)
POSlthe/Negatlve/NaN int sikn: . result = -(ABS(var2) - ABS(varl))

break;

Digit Storage




Numeric representation: Fixed Precision

- Use (only) when rounding errors
are literally unacceptable! Use
variable precision (floating
point) instead

- Implementation generally uses a
variable length binary
representation with additional
metadata

- People have tried optimizations!

S

We couldn't use the name "libfixedpoint" because it would be terrible for SEO...

O PASSED

This is a portable C++ library for fixed-point decimals. It was originally developed as part of the NoisePage
database project at Carnegie Mellon University.

This library implements decimals as 128-bit integers and stores them in scaled format. For example, it will
store the decimal 12.23 with scale 5 122300 . Addition and subtraction operations require two decimals of
the same scale. Decimal multiplication accepts an argument of lower scale and returns a decimal in the higher
scale. Decimal division accepts an argument of the denominator scale and returns the decimal in numerator
scale. A rescale decimal function is also provided.

The following files are included:

» decimal.cpp - The core fixed decimal package supporting decimals with fixed precision(38) and a max
scale of 38.

e decimal_multiplication_generator.py - Generates tests for the multiplication operations.

e magic_number_generator.py - To optimize multiplication and division with specific constants we can
generate precompiled constats to speed it up.




In-database Design-choices and Optimizations

- NULL representation

- OLAP Indexes



Representing NULLS!

Choice #1: Special Values
— Designate a value to represent NULL for a data type (e.g., INT32_MIN).

Choice #2: Null Column Bitmap Header
— Store a bitmap in a centralized header that specifies what attributes are
null.

Choice #3: Per Attribute Null Flag

— Store a flag that marks that a value is null.

— Must use more space than just a single bit because this messes up
with word alignment.



