
Kernel Bypass

Mainack Mondal
Sandip Chakraborty

CS 60203
Autumn 2024



Outline
• Linux Network Stack

• Need for Kernel Bypass

• Kernel Bypass Techniques
■ User-space packet processing

● Netmap and DPDK
■ User-space network stack

● mTCP



Linux Network Stack (Slides credits: Mythili Vutukuru, IIT Bombay)



TCP/IP Layers

Fiber/Wireless etc.

Ethernet, Switch, Bridge etc.

IP, ICMP etc.

TCP, UDP

HTTP, SMTP etc.



Typical Packet Flow



Packet Contents



Let’s see the journey of a packet through the 
Linux network stack



Packet Arrives at NIC 

NIC receives the packet 
● Match destination MAC address
● Verify Ethernet checksum (FCS)

Packets accepted at the NIC 
● DMA the packet to RX ring buffer
● NIC triggers an interrupt

Receiving 
interface of NIC

Transmitting 
interface of NIC

TX/RX rings 
● Circular queue 
● Shared between NIC and NIC driver 
● Content: Length + packet buffer pointer



Processing the Packet in Kernel

Driver dynamically allocates an sk-buff(skb)

sk-buff 
In-memory data structure that contains packet 
metadata 
● Pointers to packet headers and payload 
● More packet related information ...

To know more about 
sk_buff: Read Link

https://www.linuxjournal.com/article/1312


Packet Processing (Contd.)

NIC driver processing 

● Driver dynamically allocates an 
sk-buff

● Update sk-buff with packet 
metadata

● Remove the Ethernet header 
● Pass sk-buff to the network stack

(for all packets in buffer)

Call L3 protocol handler



L3/L4 Processing

Common Processing 
● Match destination IP/socket 
● Verify checksum 
● Remove header

+

L3-specific processing 
● Route lookup 
● Combine fragmented 

packets 
● Call L4 protocol handler

L4-specific processing
● Handle TCP state machine
● Enqueue to socket read 

queue
● Signal the socket



L3/L4 Processing (Contd.)
L3-specific processing 

● Route lookup 
● Combine fragmented packets 
● Call L4 protocol handler

L4-specific processing
● Handle TCP state machine
● Enqueue to socket read queue
● Signal the socket



Application Layer Processing

On socket read:
● Dequeue packet from socket receive queue 

(kernel space) 

● Copy packet to application buffer (user space) 

● Release sk-buff 

● Return back to the application

user space to kernel space

kernel space to user space



And the process goes on …



Need for Kernel Bypass



Packet Processing Overheads in Kernel

Context switch between kernel and userspace



Packet Processing Overheads in Kernel

Packet copy between kernel 
and userspace



Packet Processing Overheads in Kernel

● Dynamic allocation of sk_buff 
● Per packet interrupt 
● Shared data structures



Summary
● Too many context switches!! → Pollutes CPU cache

● Per-packet interrupt overhead

● Queuing delays

● Dynamic allocation of sk-buff

● Packet copy between kernel and user space

● Shared data structures

● Too Bad!! in multicore

Cannot achieve line-rate for recent high speed NICs!! (40Gbps/100Gbps)



Kernel Bypass 
to the Rescue

Image credits: Matt Brown



Outline
• Linux Network Stack

• Need for Kernel Bypass

• Kernel Bypass Techniques
■ User-space packet processing

● Netmap and DPDK
■ User-space network stack

● mTCP



Kernel Bypass Techniques



Overcome Overheads in Kernel: Kernel Bypass

● No Context switch between kernel and userspace 
● No Packet copy between kernel and userspace 
● No Dynamic allocation of sk_buff

Yay !!



But how does your userspace programs know 
when a packet has arrived?



Interrupt vs Poll Mode: Kernel Bypass Techniques

Netmap DPDK



DPDK: Dataplane Development Kit

● User-space packet processing
○ Avoid context switching overhead

● Poll Mode Driver (PMD)
○ Avoid interrupt processing overhead
○ Keeps a core busy

● Memory usage optimizations 
○ Light-weight mbufs
○ Memory pools that use hugepages, 

cache alignment, etc
○ Lockless ring buffers

Source: https://blog.selectel.com/introduction-dpdk-architecture-principles/



Netmap

● Netmap Rings are memory regions in 
kernel space shared between 
application and kernel

● Fast Interface for packet sniffing
● Light-weight packet buffers
● Fewer memory copies
● NIC can work with netmap as well as 

kernel drivers (transparent mode)

DPDK, netmap manage processing till 
L2 of network stack



L3/L4 Processing

? 



mTCP: Userspace network stack

● User-space TCP/IP stack built over kernel 

bypass packet I/O engines(e.g. DPDK)

● Designed for multicore scalable application 

● Per core TCP data structures 

○ E.g. accept queue, socket list 

○ Lock free 

○ Connection locality

● Leverages multiqueue support of NIC

● No shared data structures



mTCP Performance

Source: mTCP paper

https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf


mTCP Performance (Contd.)

Source: mTCP paper

https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf


References
● More about DPDK: Link

● Netmap Presentation (Usenix ATC 2012): Link

● Netmap Paper: Link, Implementation: Link

● mTCP Paper: Link, Implementation: Link

● Cloudflare blog on Kernel Bypass: Link

https://doc.dpdk.org/guides/linux_gsg/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/system/files/conference/atc12/atc12-final186.pdf
https://github.com/luigirizzo/netmap
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf
https://github.com/mtcp-stack/mtcp
https://blog.cloudflare.com/kernel-bypass/

