Kernel Bypass

Mainack Mondal
Sandip Chakraborty

CS 60203
Autumn 2024

Outline

¢ | inux Network Stack

e Need for Kernel Bypass

e Kernel Bypass Technigues
m User-space packet processing
e Netmap and DPDK
m User-space network stack
e MICP

Li n UX N etWO rk Stac k (Slides credits: Mythili Vutukuru, lIT Bombay)

TCP/IP Layers

T

Application

Transport

Network |-

Link -

Physical -

HTTP, SMTP etc.
TCP, UDP
IP, ICMP etc.

Ethernet, Switch, Bridge etc.

Fiber/Wireless etc.

Typical Packet Flow

Application
Transport (L4)

Network (L3)

Data link (L2)

NIC driver

NIC hardware

"

Application
Transport (L4)

Network (L3)

Data link (L2)

NIC driver
NIC hardware

Packet Contents

TCP header

src
port

dst | ..

port

Let’s see the journey of a packet through the
Linux network stack

Packet Arrives at NIC

Applicatons S serepete NIC receives the packet
e Match destination MAC address
Kernel space e \erify Ethernet checksum (FCS)

NIC driver

Packets accepted at the NIC
DMA the packet to RX ring buffer
NIC triggers an interrupt

t

Hardware
Inte

TX/RX rings
e Circular queue
e Shared between NIC and NIC driver
e Content: Length + packet buffer pointer

Transmitting Hardware ~ Receiving
interface of NIC RXqueue interface of NIC

Processing the Packet in Kernel

Applications User space

Kernel space

k
NIC driver b
~ packet

Hardware

—p NIC

Driver dynamically allocates an sk-buff (skb)

sk-buff

In-memory data structure that contains packet
metadata

e Pointers to packet headers and payload

e More packet related information ...

To know more about
sk_buff: Read Link

https://www.linuxjournal.com/article/1312

Packet Processing (Contd.)

Applications User space

Kernel space

S

- packet

Hardware

k
NIC driver b
A
 packet

buffer

buffer

NIC driver processing

Driver dynamically allocates an
sk-buff

Update sk-buff with packet
metadata

Remove the Ethernet header

Pass sk-bufTf to the network stack

(for all packets in buffer)

Call L3 protocol handler

L3/L4 Processing

Application

E

| Transport (L4)

Network (L3)

NIC driver

Data link (L2)

NIC hardware

Common Processing
e Match destination |IP/socket
e \erify checksum
e Remove header

L3-specific processing
Route lookup

Combine fragmented
packets

Call L4 protocol handler

L4-specific processing
Handle TCP state machine
Enqueue to socket read
queue

Signal the socket

L3/L4 Processing (Contd.)

L3-specific processing
T User space
Application e Route lookup
e Combine fragmented packets
Keme'space e Call L4 protocol handler

Network stack W ||R
1 |

= :I L4-specific processing

e Handle TCP state machine
packet e Enqueue to socket read queue
e Signal the socket

Hardware

packet
buffer

Application Layer Processing

user space to kernel space ||

Application < FERiskace On socket read:
; e Dequeue packet from socket receive queue
5 : Kernel space
System ca"s (kernel SpaCe)
wIR e Copy packet to application buffer (user space)
m -k e Release sk-buff
s "_:| e Return back to the application
packet

. buffer
‘ packet
__buffer

g kernel space to user space

\ . buffer

Hardware

And the process goes on ...

Need for Kernel Bypass

Packet Processing Overheads in Kernel

Application read

4

|

Context switch between kernel and userspace

Kernel

NIC

} user space

kernel space

Packet Processing Overheads in Kernel

Packet copy between kernel
and userspace

Application buffer
in userspace

Buffer in kernel
memory

Application read

4

Kernel

\ 4

NIC

} user space
} kernel space

Packet Processing Overheads in Kernel

e Dynamic allocation of sk_buff
e Per packet interrupt
e Shared data structures

receive

Application

Y

skb skb
Kernel

A

Y

=

NIC

il

transmit

Summary

e Too many context switches!! — Pollutes CPU cache
e Per-packet interrupt overhead

e Queuing delays

e Dynamic allocation of sk-buff

e Packet copy between kernel and user space

e Shared data structures

e [00 Bad!l in multicore

Cannot achieve line-rate for recent high speed NICs!! (40Gbps/100Gbps)

Kernel Bypass
to the Rescue

Image credits: Matt Brown

Outline

¢ | inux Network Stack

e Need for Kernel Bypass

e Kernel Bypass Techniques
m User-space packet processing
e Netmap and DPDK
m User-space network stack
e MICP

Kernel Bypass Techniques

Overcome Overheads in Kernel: Kernel Bypass

Application

A

Kernel

[

\

NIC

} user space

L2-L4 packet
processing

e

} kernel space

Pre-allocated

BN

Application

Shared
buffers

Packet processing

” user space

NIC

e No Context switch between kernel and userspace
e No Packet copy between kernel and userspace
e No Dynamic allocation of sk_buff

But how does your userspace programs know
when a packet has arrived?

Interrupt vs Poll Mode: Kernel Bypass Techniques

Interrupt Mode

CPU K NIC

e NIC notifies it needs servicing

e Interrupt is a hardware mechanism
e Handled using interrupt handler

e Interrupt overhead for high speed

traffic

Netmap

Poll Mode

CPU N NIC

CPU keeps checking the NIC
Polling is done with help of control
bits(Command-ready bit)

Handled by the CPU

Consumes CPU cycles but handles

DPDK

high speed traffic

DPDK: Dataplane Development Kit

Linux Kernel without DPDK Linux Kernel with DPDK

“Applications e User-space packet processing

[Applications |||| . . o Avoid context switching overhead
DPDK Libraries

e Poll Mode Driver (PMD)
o Avoid interrupt processing overhead
o Keeps a core busy

Kernel Space

e Memory usage optimizations
| i | o Light-weight mbufs
I S —————— 1 o Memory pools that use hugepages,

cache alignment, etc
Network Controller II“ b-ll\faertdv:\?;rke Network Controller IIII O I—OCkleSS riﬂg bUﬁerS

Source: https://blog.selectel.com/introduction-dpdk-architecture-principles/

Netmap

e Netmap Rings are memory regions in
kernel space shared between
application and kernel

Fast Interface for packet sniffing

Light-weight packet buffers

Fewer memory copies

NIC can work with netmap as well as
kernel drivers (transparent mode)

Application

User Space

DPDK, netmap manage processing till
L2 of network stack

i

Sockets

v ¢

Kernel TCP
Stack

vt

Z

Netmap driver

Drivers (ixgbe)

Kernel Space

L3/L4 Processing

Application

Data link (L2)

NIC driver

NIC hardware

MTCP: Userspace network stack

e User-space TCP/IP stack built over kernel I A‘fp'icaf o 1
bypass packet 1/0O engines(e.g. DPDK)
Per core mTCP
e Designed for multicore scalable application thread s E g g
e Per core TCP data structures ﬁ & * %
o E.g. accept queue, socket list netmap/ DPDK
o Lock free | S S
o Connection locality NIC I I I I

e | everages multigueue support of NIC

e NoO shared data structures

Incoming packets

MTCP Performance

--@--Linux —@ -REUSEPORT =+4=- MegaPipe ——mTCP

»-\10 " /‘ y
I, °
2 8 - e
, ,
6 ,, /.
= b A .
=] ,‘ _
P 4
£ e
S 4 p
= 2 =" -® a
” —=
&) It
0—0‘
Moccccscccs ettt -,
0 . . | I l

64B 256B 1KiB 4KiB 8KiB
Message Size Source: mTCP paper

https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf

MTCP Performance (Contd.)

100%

80%

60%

40%

CPU Utilization

20%

0%

o

OKernel OPacket /O @TCP/IP m Application

Linux-2.6

Linux-3.10

MegaPipe

mTCP

Source: mTCP paper

https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf

References

e More about DPDK: Link

e Netmap Presentation (Usenix ATC 2012): Link
e Netmap Paper: Link, Implementation: Link

e mMITCP Paper: Link, Implementation: Link

e Cloudflare blog on Kernel Bypass: Link

https://doc.dpdk.org/guides/linux_gsg/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/system/files/conference/atc12/atc12-final186.pdf
https://github.com/luigirizzo/netmap
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf
https://github.com/mtcp-stack/mtcp
https://blog.cloudflare.com/kernel-bypass/

