
Concurrency and Lightweight Threads

Mainack Mondal
Sandip Chakraborty

CS60203
Autumn 2024



Today’s class
- Parallelism and concurrency
- What’s the issue with OS threads?

- Overhead, and latency

- How to implement concurrency? Event loops

- Python asyncio event loop

- Extending to multiple cores

- Motivating work stealing

- Go runtime internals



Parallelism and concurrency



Parallelism

- Parallelism is when tasks literally run at the same time, e.g., on a 
multicore processor.
- So far we have seen operating systems threads used for 
parallelising tasks
- In terms of threads, Sun defines parallelism as- A condition that 
arises when at least two threads are executing simultaneously.
- We have also seen ILP, and SIMD parallelism

Parallelising CPU bound tasks improves throughput

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html


But what if, tasks are idle most of the time?

Does parallelising it help?



What if task is idle/blocked most of the time?

Blocked/Nothing to do…Task running

This is very common…
- Databases, and logging systems are often blocked on disk IO
- HTTP server handling a request is often blocked on network IO
- Data pipelines are blocked on previous stages
- ….



What if you parallelise it?

Nothing to do…Task running
Nothing to do…Task running

Nothing to do…Task running
Nothing to do…Task running

Nothing to do…Task running

It gets a bit better… but clearly this can’t be the best we can do



Task A is (not actually) waiting

What if…you could do this

…Task A running Task B running Task C running

Task B is (not actually) waiting

Task C is (not actually) waiting

This is the idea of concurrency



Concurrency

- Concurrency is when two or more tasks can start, run, and 
complete together 
- It doesn't necessarily mean they'll ever both be running at the same 
instant. 
- For example, multitasking on a single-core machine
- Sun defines concurrency as- A condition that exists when at least 
two threads are making progress. A more generalized form of 
parallelism that can include time-slicing as a form of virtual 
parallelism.

Concurrently performing IO bound tasks improves throughput



Isn’t this how the OS scheduling (and IO) works already? 

Yes it is :)

But there is a catch



Today’s class
- Parallelism and concurrency
- What’s the issue with OS threads?

- Overhead, and latency

- How to implement concurrency? Event loops

- Python asyncio event loop

- Extending to multiple cores

- Motivating work stealing

- Go runtime internals



Overhead in OS threads



Overhead in OS threads

Starting up an OS thread, or even waking it up takes many clock 
cycles

auto mythread = std::thread([] { counter++; });
mythread.join();

How much time do you think it will take per thread?



Overhead in OS threads

Starting up an OS thread, or even waking it up takes many clock cycles

auto mythread = std::thread([] { counter++; });
mythread.join();

On my machine (Core i9)- 
50202.5 ns +/- 23485.3 (average +/- std. deviation)
min: 35700
max: 248268

It’s taking thousands of clock cycles!



Recall: But…how bad is a context switch?

Performance loss (Soares et al., 2010) Performance loss (Zhou et al., 2023)

Userspace IPC drops to around 0 right after syscall, and takes 
~20k instructions to come back to normal



Overhead in OS threads

Starting up an OS thread, or even waking it up takes many clock cycles

1. Hence OS threads should not be used when unblocked compute 
time is small, and is overshadowed by creation/start-up time

This is clearly the case with concurrent programs!

<thread switch>Thread runs Thread runs <thread switch>



Overhead in OS threads

Starting up an OS thread, or even waking it up takes many clock cycles

1. Hence, OS threads should not be used when compute time is small, 
and is overshadowed by creation/start-up time

2. Hence, OS threads should also not be used in places where their 
results are to be used in control flow

This is because control flow of the thread in question will 
start to block, and incur latency of thread switches!

 



Overhead in OS threads

Starting up an OS thread, or even waking it up takes many clock cycles

1. Hence, OS threads should not be used when compute time is small, 
and is overshadowed by creation/start-up time

2. Hence, OS threads should also not be used in places where their 
results are to be used in control flow

3. OS threads are allocated larger stack memory, and kernel does 
not have an option to decommit allocated memory

But, given that paging is on-demand, do you think that is an issue?

 



Today’s class
- Parallelism and concurrency
- What’s the issue with OS threads?

- Overhead, and latency

- How to implement concurrency? Event loops

- Python asyncio event loop

- Extending to multiple cores

- Motivating work stealing

- Go runtime internals



How to implement concurrency? Event loops



- So far we have seen that OS threads have overheads, which 
become a bottleneck for highly concurrent systems

- Here we will try to implement concurrency from first principles, 
and notice a pattern

- This pattern is termed, an “Event Loop”, and is commonly used to 
develop concurrent systems

How to do things concurrently? 



In computer science, the event loop (also known as message 
dispatcher, message loop, message pump, or run loop) is a 
programming construct or design pattern that waits for and 
dispatches events or messages in a program. 

The event loop works by making a request to some 
internal or external "event provider" (that generally blocks 
the request until an event has arrived), then calls the relevant 
event handler ("dispatches the event").

The event loop - Wikipedia



1. Start a task A, and do required computation

How to implement concurrency? Step-1

Task A running



1. Start a task A, and do required computation
2. When task A blocks/waits, save state of A

How to implement concurrency? Step-2

Task A running

Task A state saved

Blocked



1. Start a task A, and do required computation
2. When task A blocks/waits, save state of A
3. Add check in selector to see if A is unblocked, i.e. ready to run again

How to implement concurrency? Step-3

Task A running

Task A state saved

select 
task

Blocked

will check for A as well



1. Start a task A, and do required computation
2. When task A blocks/waits, save state of A
3. Add check in selector to see if A is unblocked, i.e. ready to run again
4. Check for “ready tasks”, and select one among them to run

How to implement concurrency? Step-4

Task A running Task B running

Task A state saved

select 
task

Blocked



1. Start a task A, and do required computation
2. When task A blocks/waits, save state of A
3. Add check in selector to see if A is unblocked, i.e. ready to run again
4. Check for “ready tasks”, and select one among them to run

How to implement concurrency? Step-4

Task A running Task B running

Task A state saved

select 
task

Blocked
select 
task

can select A to continue 



How to implement concurrency? Step-5

Task A running Task B running

Task A state saved

select 
task

Blocked
select 
task

1. Start a task A, and do required computation
2. When task A blocks/waits, save state of A
3. Add check in selector to see if A is unblocked, i.e. ready to run again
4. Check for “ready tasks”, and select one among them to run
5. Repeat for each task! (yep this is the event loop)



Callbacks

Task A running
func fun1

schedules callback fun2
to run when unblocked

Blocked
select 

callback

To implement such a design, we use the idea of callbacks. A callback is a piece of 
code (often a function), used to schedule as a task on the event-loop. 

Figure sequence:
func fun1 → schedules callback fun2 → loop calls callback fun2 when unblocked

can select callback fun2

fun2 picked from ready queue



Event loops and callbacks
1. Start a task A, and do required computation
2. When task A blocks/waits, save state of A
3. Add check in selector to see if A is unblocked, if so it can be run again 
4. Select another task to run and run it
5. Repeat for each task! (yep this is the loop)

At a high level, we need to define an event loop that does following-
while true:

1. Select callback to run from ready queue
2. Run the callback 
3. if needed: Schedule a new callback



Python asyncio

A real world event loop



asyncio — Asynchronous 
I/O — Python 3.12.5 
documentation

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html


The event loop definition

A reference implementation of the 
event loop can be taken from

class BaseEventLoop

From 
cpython/Lib/asyncio/base_events.p
y at main

The loop

one iteration

https://github.com/python/cpython/blob/main/Lib/asyncio/base_events.py
https://github.com/python/cpython/blob/main/Lib/asyncio/base_events.py


_run_once: One iteration of the loop

1. Performs bookkeeping on delayed/cancelled tasks
2. Maintains self._ready queue of tasks that can be run
- tasks scheduled to be called later

adds to queue



_run_once: One iteration of the loop

1. Performs bookkeeping on delayed/cancelled tasks
2. Maintains self._ready queue of tasks that can be run
- tasks scheduled to be called later
- tasks waiting on IO (using a selector)

Note- selector is chosen on the basis of what is faster for OS, like 
epoll for Linux



_run_once: One iteration of the loop

1. Performs bookkeeping on delayed/cancelled tasks
2. Maintains self._ready queue of tasks that can be run
- tasks scheduled to be called later
- tasks waiting on IO (using a selector)
3. Executes the tasks in self._ready using handle._run()

runs task



Today’s class
- Parallelism and concurrency
- What’s the issue with OS threads?

- Overhead, and latency

- How to implement concurrency? Event loops

- Python asyncio’s event loop

- Extending to multiple cores

- Motivating work stealing

- Go runtime internals



Extending to multiple cores



So far we have been running instructions on one processor, or 
to be exact, one OS thread 

The idea of user-level concurrency can also be applied to 
more than one OS threads

The general version is about running m virtual threads, on n 
OS level threads

The m:n problem



Attempt 1

Event loop with a thread pool



1. The idea is to extend the event loop for each thread in a 
thread-pool. 

2. We maintain a central ready queue, and each thread can 
pick from it

Attempt 1: Event loop with a thread pool



Recall: Event loops and callbacks
1. Start a task A, and do required computation
2. When task A blocks/waits, save state of A
3. Add check in selector to see if A is unblocked, if so it can be run again 
4. Select another task to run and run it
5. Repeat for each task! (yep this is the loop)

At a high level, we need to define an event loop that does following-
while true:

1. Select callback to run from ready queue
2. Run the callback 
3. if needed: Schedule a new callback



Attempt 1: Event loop with a thread pool

At a high level, we need to define an event loop that does following-
while true:

1. Select callback to run from ready queue
2. Run the callback 
3. if needed: Schedule a new callback

1. The idea is to extend the event loop for each thread in a thread-pool. 
2. We maintain a central ready queue, and each thread can pick from it

At a high level, we need to define an event loop that does following-
while true:

1. Select callback to run from ready queue
2. Run the callback 
3. if needed: Schedule a new callback

At a high level, we need to define an event loop that does following-
while true:

1. Select callback to run from ready queue
2. Run the callback 
3. if needed: Schedule a new callback

At a high level, we need to define an event loop that does following-
while true:

1. Select callback to run from ready queue
2. Run the callback 
3. if needed: Schedule a new callback

At a high level, we need to define an event loop that does following-
while true:

1. Select callback to run from ready queue
2. Run the callback 
3. if needed: Schedule a new callback

thread pool

thread 1..n

callback A

callback B

…

callback C

ready queue



Attempt 1 Example: Old Go Runtime

The orignal Go runtime scheduler comprised of 3 major C struct
struct G: 
Represented a single goroutine. Fields tracked stack and current status. It 
also contained references to the code that it is responsible for running.
struct M: 
Go runtime’s representation of an OS thread, had pointers to the global queue 
of G’s, the G that it is currently running, its own cache, and a handle to the 
scheduler
struct Sched: 
The Sched struct is a single, global struct that keeps track of the different 
queues of G’s and M’s, and more some information



Old Go Runtime: struct G

struct G:
 
Represented a single 
goroutine. Fields tracked stack 
and current status. It also 
contained references to the 
code that it is responsible for 
running.



Old Go Runtime: struct M

struct M:
 
Go runtime’s representation of 
an OS thread, had pointers to 
the global queue of G’s, the G 
that it is currently running, its 
own cache, and a handle to the 
scheduler



Old Go Runtime: struct Sched
struct Sched: 
- There are two queues 
containing G structs, one is the 
runnable queue where M’s can 
find work, and the other is a free 
list of G’s.
- There is only one queue 
pertaining to M’s; the M’s in this 
queue are idle

In order to modify these queues, the 
global Sched lock must be held.



Old Go Runtime: Execution
1. The runtime starts out with several G’s. 

One is in charge of garbage collection, another is in charge of 
scheduling, and one represents the user’s Go code

2. Initially, one M is created to kick off the runtime.
- As the program progresses, more G’s may be created by the user’s Go 
program, and more M’s may become necessary to run all the G’s
- The runtime may provision additional threads up to GOMAXPROCS.

3. An M without a currently associated G will pick up a G from the global 
runnable queue and run the Go code belonging to that G.

4. If the Go code requires the M to block, for instance by invoking a system 
call, then another M will be woken up from the global queue of idle M’s.



Attempt 1 Shortcomings
Single global mutex: Sched.Lock: 
The shared ready queue will need a lock, which becomes a 
bottleneck at high scales (~100k callbacks/lightweight threads)

Vitess (implemented in Golang) server would max out at 70% CPU, 
and spend 14% of all time in runtime.futex()

https://github.com/vitessio/vitess


Single global mutex: Sched.Lock: 
The shared ready queue will need a lock, which becomes a 
bottleneck at high scales (~100k callbacks/lightweight threads)
Memory resources: Per-M memory cache (M.mcache): 
Memory resources owned at thread level, are in use even when the 
thread is not running anything (which is often).

Memory cache and other caches (stack alloc) are associated with all 
M's, and not with M's running Go code. Ratio between M's 
running Go code and all M's can be as high as 1:100

Attempt 1 Shortcomings



Single global mutex: Sched.Lock: 
The shared ready queue will need a lock, which becomes a bottleneck 
at high scales (~100k callbacks/lightweight threads)
Memory resources: Per-M memory cache (M.mcache): 
Memory resources owned at thread level, are in use even when the 
thread is not running anything (which is often). A ratio between M's 
running Go code and all M's can be as high as 1:100.
Aggressive thread blocking/unblocking: 
In presence of syscalls worker threads are frequently blocked and 
unblocked. This adds a lot of overhead.

Attempt 1 Shortcomings



Attempt 2

Work stealing scheduler



1. The core idea is to remove the central ready queue, and have a queue for 
each process, this solves lock bottleneck

2. To distribute work in a decentralised way, concept of “stealing”, work can 
be used (Note, similar concept of “sharing” exists too)

Every task is created on some thread, and is associated with it. When a thread 
is idle (has no tasks to run) it can steal “work” (tasks) from other threads!

3. We also introduce indirection in resource ownership, to handle other 
bottlenecks

Attempt 2: Work stealing scheduler



Include another struct, P, to 
simulate processors. There are 
exactly GOMAXPROCS P’s, and a P 
would be another required resource 
for an M in order for that M to 
execute Go code.

An M would still represent an OS 
thread, and a G would still portray a 
goroutine. 

Attempt 2 Example: Work stealing scheduler in Go



1. When an M is willing to start executing Go code, it must pop a P 
form a free list of P. When an M ends executing Go code, it 
pushes the P to the list.

2. When a new G is created or an existing G becomes runnable, it is 
pushed onto a list of runnable goroutines of current P. 

3. When P finishes executing G, it first tries to pop a G from own 
list of runnable goroutines.

4. If the list is empty, P chooses a random victim (another P) and 
tries to steal a half of runnable goroutines from it.

Work stealing scheduling steps



- Threads (M) acquire resources when they are running a go-routine 
(G), this indirection cuts memory waste

- Note, OS does not know about P, as it is an abstraction, but it is 
aware of M, hence affinity between M, and G leads to better locality

- When an M creates a new G, it must ensure that there is another M 
to execute the G (if not all M’s are already busy). Similarly, when an 
M enters syscall, it must ensure that there is another M to execute 
Go code. This is done with (a mix of passive i.e. sched_yield 
and active spinning)

Scalable Go Scheduler Design Doc

Resolving other bottlenecks

https://docs.google.com/document/d/1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_kqxDv3I3XMw/edit?usp=sharing


Conclusion

Comparing Goroutines and OS threads



Goroutines are cheap and do not cause the thread on which they are 
multiplexed to block if they are blocked on

1. network input
2. sleeping
3. channel operations
4. primitives in the sync package.

Goroutines blocking



Stack memory requirement

OS Thread

OS threads have allocated stacks with size(s) in MBs, and each thread 
has a guard page between their stacks. This starts to matter at scale.



Stack memory requirement
Goroutines Goroutine stacks are not memory intensive (measured in KBs). 
Instead of using guard pages, the Go compiler inserts a check as part of 
every function call to check if there is sufficient stack for the function to run. 

If there is not, the runtime can allocate more stack space (Go copies the 
existing stack into allocated memory, can you guess why?)

How Stacks are 
Handled in Go.

https://blog.cloudflare.com/how-stacks-are-handled-in-go#:~:text=A%20function%20would%20grow%2C%20split,managing%20stacks%2C%20called%20stack%20copying
https://blog.cloudflare.com/how-stacks-are-handled-in-go#:~:text=A%20function%20would%20grow%2C%20split,managing%20stacks%2C%20called%20stack%20copying


OS Thread

Threads are scheduled preemptively. And context switches are very 
expensive!

Goroutines

Goroutines are scheduled cooperatively and when a switch occurs, 
only 3 fields need to be saved/restored - Program Counter, Stack 
Pointer and DX

Thread switching cost



Massively concurrent IO

OS Thread (i.e. using OS threads directly for concurrency)

Modern networking primitives like io_uring, and kernel bypass 
(which we will cover soon) are needed to scale up

Goroutines

Goroutines easily handle O(~100k) concurrent IO requests, note, using 
(1) no thread when blocked, (2) the low memory requirements make 
this possible


