
Multicore Programming

Mainack Mondal
Sandip Chakraborty

CS60203
Autumn 2024

Today’s class
- Why write multicore programs?

- Because parallelism is everywhere!
- But why not (just) ILP, or SIMD, or something else?
- …and why not `n` computers?

- Comparing single and multi-core systems
- Simultaneous Multithreading
- SMP and NUMA

- How to write efficient multi-core programs?
- Minimize synchronization overhead
- Be mindful of cache coherence
- per-core sharding, and Seastar

Why write multicore programs?
question…

Parallelism: Scientific Computing
1. Scientific computing
- eg: weather simulation, aerodynamics, simulation of

epidemics

Fast Weather Simulation for Inverse Procedural Design of 3D Urban
Models, Ignacio et al., 2017

Parallelism: Computational Geometry
2. Computational geometry/computer graphics

Example-
// find all points with x coordinate > y coordinate
for p in points:

if p.x > p.y: answer.append(p)

Clearly…all points can be processed in parallel!

Parallelism: Computational Geometry
2. Computational geometry/computer graphics

Example-
// for q queries find nearest neighbor among r points
for query in queries:

ans = INF
for point in reference:

ans = min(ans, distance(query, point))

This is the nearest neighbor problem, can you parallelise this?

Parallelism is Everywhere
1. Scientific computing
- eg: weather simulation, aerodynamics, simulation of

epidemics

2. Computational geometry/computer graphics

- The domain of the problem can be segmented

3. Deep learning (of course)

- Tensor operations are inherently parallel

4. Server workloads

- Handling multiple independent requests

How do we exploit it?
so parallelism is everywhere…

How about Instruction Level Parallelism?
Remember this?

CS4617 Computer Architecture - Lecture 20: Pipelining
Reference: Appendix C, Hennessy & Patterson Reference

http://www.cs.ucc.ie/~jvaughan/cs4617/slides/lecture20.pdf
http://www.cs.ucc.ie/~jvaughan/cs4617/slides/lecture20.pdf

That was a fake diagram, here’s the real one

The goal of the front-end is to feed the
back-end with a sufficient stream of
operations which it gets by decoding
instructions coming from memory.

The front-end has two major pathways:
the µOPs cache path and the legacy
path. The legacy path is the
traditional path whereby
variable-length x86 instructions are
fetched from the level 1 instruction
cache, queued, and consequently get
decoded into simpler, fixed-length
µOPs.

https://en.wikichip.org/w/index.php?title=front-end&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=decoding_instructions&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=decoding_instructions&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=%C2%B5OPs_cache&action=edit&redlink=1
https://en.wikichip.org/wiki/x86
https://en.wikichip.org/w/index.php?title=level_1_instruction_cache&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=level_1_instruction_cache&action=edit&redlink=1
https://en.wikichip.org/wiki/%C2%B5OPs
https://en.wikichip.org/wiki/%C2%B5OPs

That was a fake diagram, here’s the real one

The goal of the front-end is to feed the
back-end with a sufficient stream of
operations which it gets by decoding
instructions coming from memory.

The front-end has two major pathways:
the µOPs cache path and the legacy
path. The legacy path is the
traditional path whereby
variable-length x86 instructions are
fetched from the level 1 instruction
cache, queued, and consequently get
decoded into simpler, fixed-length
µOPs.

Just for reference

Read if you feel like it :)

We’ll explain relevant
parts as we go

https://en.wikichip.org/w/index.php?title=front-end&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=decoding_instructions&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=decoding_instructions&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=%C2%B5OPs_cache&action=edit&redlink=1
https://en.wikichip.org/wiki/x86
https://en.wikichip.org/w/index.php?title=level_1_instruction_cache&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=level_1_instruction_cache&action=edit&redlink=1
https://en.wikichip.org/wiki/%C2%B5OPs
https://en.wikichip.org/wiki/%C2%B5OPs

ILP has Architectural Bottlenecks!

Reads instructions and “decodes” them, this
circuit is like a hardware compiler and can only
decode upto “decode width” uops/cycle

Issues (sends for execution) decoded instructions,
upto “issue width” uops/cycle

Upto “retire width” uops/cycle instructions retired

ILP has Architectural Bottlenecks!

Reads instructions and “decodes” them, this
circuit is like a hardware interpreter and can only
decode upto “decode width” uops/cycle

Issues decoded instructions, upto “issue width”
uops/cycle

Upto “retire width” uops/cycle instructions retired

All of these are bound by
hardware circuitry, and are
in 4-8 uops/cycle range

Any one of them being low
can be a bottleneck!

What if there was no hardware bottleneck?

Hardware circuitry is also implementing algorithms

What if you have O(n) circuits? 64 bit computer is 4x slower than 16 bit

But for a second let us assume there is no hardware bottleneck (in
circuit complexity or availability of functional units for parallelisation)

Would ILP be enough then?

ILP’s fundamental problem

No…we almost never see the theoretical maximum ops/cycle
even today!

1. Instruction dependencies
2. Branch mispredictions
3. Stalling on memory/cache
4. And pipeline stalls/flushes from the above

Important Note

1. We are looking at the limitations of ILP, SIMD, and distributed
computing. To motivate the need for multicore programming.

2. But it should be noted that these approaches have their own use
cases (eg, distributed computing is necessary when working on very
large data)

3. In many scenarios parallelization from some/all of these
paradigms can/should be used (eg, distributed programs with each
worker is multicore)

If not ILP, then…how?
parallelism is everywhere…

How about SIMD?

1. Writing SIMD code is hard

2. Auto-vectorization support is terrible

3. Explicit SIMD (mostly) makes code unportable

4. Downclocking

How about SIMD?

1. Writing SIMD code is hard

2. Auto-vectorization support is terrible

3. Explicit SIMD (mostly) makes code unportable

4. Downclocking

Surely it can’t be that bad…

What does this code do?

What does this code do?

calculates `cos` for four 64-bit
numbers (4 element vector)

Auto-vectorization in GCC and Clang

Things are bad even for
stdlib algorithms!

Autovectorization status in
GCC & Clang in 2021

http://0x80.pl/notesen/2021-01-18-autovectorization-gcc-clang.html
http://0x80.pl/notesen/2021-01-18-autovectorization-gcc-clang.html

Downclocking due to SIMD

- CPUs have multiple (eg, 3 for Intel) levels of clock speeds (eg, L0, L1, L2)
- Executing SIMD instructions downclocks the CPU, and even non-SIMD

instructions will execute at lower clock-cycle
- Downclocking depends on the instructions (eg, noticeable downclocking

is observed most often x86 for FMA, and AVX-512)
- Downclocking depends on the number of cores on which SIMD in use (as

figure illustrates for Xeon Gold 5120)
Hence it is important to benchmark and verify changes!

https://en.wikichip.org/wiki/intel

Why not use `n` different computers?
parallelism is everywhere…

Why not use `n` different computers?

1. Network overhead / bottleneck between cores
- Each node needs data in it’s memory to perform computation
- If rate of data transfer is slower than computation (which is almost

always the case), computation gets bottlenecked
2. More power consumption for the same number of cores
- More operations needed to produce same results (additonal network

IO, syscall overhead, and more…)
3. Higher latency for all operations / jobs
- The system will first divide up the tasks, and corresponding data, and

then combining results (needing network IO)

Today’s class
- Why do we care about multicore programs?

- Because parallelism is everywhere!
- But why not (just) ILP, or SIMD, or something else?
- …and why not `n` computers?

- Comparing single and multi-core systems
- Simultaneous Multithreading
- SMP and NUMA

- How to write efficient multi-core programs?
- Minimize synchronization overhead
- Be mindful of cache coherence
- per-core sharding, and Seastar

Comparing single and multi-core systems

But how would you make a “multi”core processor?

Idea 1: Simultaneous Multithreading

- Modern processors share 2 sets of registers for one processing core
- This is done because most often one single “thread” of execution

can’t utilize all the CPU throughput available with a core
- This is one way of making “2 cores out of 1”, and is almost universally

available on computers

Fun fact: it’s questionable, and applications like HFTs prefer to disable it, can you guess why?

Simultaneous Multithreading: The Real Picture

Intel Technology Journal, Vol 06, Issue 01, 2002.

Idea 2: Symmetric Multiprocessor

Essentially, multiple cores on 1 chip, and all of them

1. Have some exclusive resources (registers, functional units, …)
2. Symmetrically share the rest (lower level caches, memory…)

Symmetric Multiprocessor: Design Consideration

Can you tell what’s wrong with this design?

Idea 3: Non-Uniform Memory Access

Non-Uniform Memory Access systems arise when the cost of
memory access is not uniform, i.e. access-time for a word A is
consistently significantly more than the access-time for a word B

NUMA Example

Non-Uniform Memory Access systems arise when the cost of
memory access is not uniform, i.e. access-time for a word A is
consistently significantly more than the access-time for a word B

A NUMA system made by 2
SMP cores

Can you see why this is NUMA?

Intel® Journal

https://www.intel.com/content/dam/www/public/us/en/documents/research/2007-vol11-iss-4-intel-technology-journal.pdf

Today’s class
- Why do we care about multicore programs?

- Because parallelism is everywhere!
- But why not (just) ILP, or SIMD, or something else?
- …and why not `n` computers?

- Comparing single and multi-core systems
- Simultaneous Multithreading
- SMP and NUMA

- How to write efficient multi-core programs?
- Minimize synchronization overhead
- Be mindful of cache coherence
- per-core sharding, and Seastar

How to write efficient multicore programs?

Problem: Multicore programming is hard!
1. Behaviour depends on the instructions, and also on scheduling of

threads
2. Leads to subtle, hard to track, and very hard to reproduce

(non-deterministic) bugs
3. Hard to reason about correctness!

Consider 2 cores executing the following code(s). What are the
possible values retrieved by the loads?

Multicore programs are hard(er) to reason about
result can be anything, anytime!

Solution: Synchronization

1. Within a thread execution is sequential (not exactly, as modern
processors are out-of-order…but it behaves like it). Threads are
often executing on different cores at once

2. Across threads there is no guarantee on order or timing of
instructions

3. We can introduce primitives to give us some guarantees on the
ordering of the instructions such primitives are called
synchronization primitives

4. Locks are one example of this!

Synchronization Solution: Locks

We have covered locks in the OS course.

What’s relevant here is-

Please avoid locks if you can 🙏

Please…

The problem with lock based synchronization

1. Locks are “reasonably” fast when there is low/no contention,
(generally just an atomic instruction), the main overhead comes
from blocking on the lock

2. Blocking on a lock is implemented using a context switch,
followed by insert on a queue corresponding to the lock, and the
thread is no longer runnable :(

3. When lock is released, one thread wakes up from the queue,
and is runnable. When it wakes up, it is in the critical section, and
has acquired the lock.

But…how bad is a context switch?

Performance loss (Soares et al., 2010) Performance loss (Zhou et al., 2023)

Userspace IPC drops to around 0 right after syscall, and takes
~20k instructions to come back to normal

A naive lock-

int value = 0;
acquire () {

while (test&set(value));
}

release () {
value = 0;

}

People often prefer spinlocks because of this…

So context switches (hence locks) can be pretty bad…

can we do better?

Lockless Programming! We’ll cover this soon

But so far we have been taking something for granted

Cache Coherence

So far in multicore programming, we have taken coherence of the
cache for granted.

Coherence implies that reads to a given memory location at a given
time, from any core should return the same value.

1. When a core writes to a memory location,

and another core has it in it’s L1 cache, what happens?

2. Will the other core see the updated value or the incorrect one?

Cache Coherence: What is it?

1. When a core writes to a memory location, and another core has it in
it’s L1 cache, what happens?

2. Will the other core see the updated value or the incorrect one?

Answer: Other core sees the updated value, because the hardware
manages it :)

This is called cache coherence.

How does cache coherence work?

1. There are many protocols (VI, MSI, MESI), of different kinds
(snooping based, directory based)

2. Caches maintain metadata of whether or not their entries are valid,
and on write to a location, other cores caching that location
will mark their entry as invalid

On write
Publicise the
write on bus

Invalidate Invalidate

Cache coherence example: Busy wait

A naive busy-wait lock-

int value = 0;
acquire () {

while (test&set(value));
}

release () {
value = 0;

}

Can we do a better busy-wait lock for multiprocessing?

But what’s the issue? Cache coherence

1. test&set instruction always causes a write, because of the `set` part

2. Due to the write cache invalidation takes place in other cores

3. Doing so in a tight-loop floods the bus with invalidation, this is called an

invalidation storm

4. Can we do better? i.e. without doing a write every single time, can we write a

busy wait lock?

Improved code: Busy wait

int lock = 0; // Free
acquire() {

do {
while(lock); // Wait until might be free

} while(test&set(&lock)); // exit if get lock
}
release() {

lock = 0;
}

Can you see why this is better?

False sharing in cache coherence protocols

In the modern processors a cache-line (the smallest unit in which the

processor writes to cache) is larger than the word size

cache lineword size

1 word 4 words

False sharing in cache coherence protocols

1. In the busy-wait example, a lot of (avoidable) writes to a value take place

2. In the modern processors a cache-line (the smallest unit in which the

processor writes to cache) is larger than the word size

3. As a consequence of this writing to one word of the cache-line

invalidates the whole cache-line

4. Note, this invalidation is caused even when a value is not shared! Hence it is

termed false sharing, and should be avoided

Avoiding synchronization/cache coherence overhead is hard…

but not impossible

Per-core sharding/shared-nothing architecture

1. Per core sharding schedules one thread per core

2. Communication takes place using message passing instead of shared

memory by default

3. Because there is no shared memory

…there is no need for locking, and no cache coherence overhead

Yay!

Some issues to note

1. Implementation is no longer simple, and often requires async

programming

2. Such optimizations are not necessary in most cases

3. Even when performance is important, IO and other factors become a

bottleneck

4. To make sure that whole system is performant (no IO bottlenecks, etc) it’s

generally used with techniques like kernel bypass

A great example: Seastar (Just for reference)
Your view into any application starts with a
seastar::distributed<T> type. This means a copy of
the T is thread local. Following optimizations are done at
type level:

- Small type optimizations (although
seastar::small_set<T> and
seastar::small_map<K,V> are missing).

- Non thread safe non-polymorphic shared pointer (local
to core) via seastar::lw_shared_ptr<T>

- Non-thread safe polymorphic shared pointer (local to
core) via seastar::shared_ptr

- String with small type optimizations nor atomics like the
libc++

- Move only bag-o-bytes
- Circular buffers
- Linux DAIO

