
Advances in
 Lock-Free Programming

Mainack Mondal
Sandip Chakraborty

CS 60203
Autumn 2024

What we have seen so far …
• Locks in OS

■ What are locks and why are they required?
■ Different types of Locks
■ Why are Locks Bad?

• Lock-Free Programming
■ Definition, Different Lock Free Primitives
■ Examples of lockless Data Structures
■ Advantages
■ Problems ~ ABA Problem

Outline
• Lock-Free Primitives

■ Hardware
■ Software

• Read-Copy-Update(RCU) in Linux
• Lock-Free APIs in Programming Languages

■ Java
■ C/C++

• Problems with lock-free programming
• Uses of lock-free programming

Lock-Free Primitives

Lock-Free Primitives in Hardware

Ever wondered… How CAS instruction is implemented in hardware ?
● Using a special compare and exchange instruction (x86)

○ CMPXCHG

Instruction Format:

CMPXCHG reg/mem32, reg32

destination
register/memory

source register

How does it work ?

same/similar
instructions exists in
other architectures.
Read more

https://www.agner.org/optimize/instruction_tables.pdf

The CMPXCHG instruction

accumulator = %eax
TEMP = DEST

IF accumulator = TEMP
 THEN
 ZF := 1;
 DEST := SRC;
 ELSE
 ZF := 0;
 accumulator := TEMP;
 DEST := TEMP;
FI;

ZF : Zero Flag (also known as EFLAG) is a
status flag in the FLAGS register. Read more

Similar instructions exist for
8 bit, 16 bit and 64 bit
architectures. Read more

https://en.wikipedia.org/wiki/Zero_flag
https://www.felixcloutier.com/x86/cmpxchg

The CMPXCHG instruction

● The CMPXCHG instruction is not completely atomic !!
● It is atomic, but only on single core, not for multiple cores
● To make it atomic on multiple cores a special prefix is used

LOCK CMPXCHG reg/mem32, reg32

prefix

Note: Don’t confuse it with the lock that you have studied. It is just a
part of the instruction to make it atomic across multiple cores

Lock-Free Primitives in Software
● In software, such primitives are provided by compilers
● Underlying these functions use hardware primitives
● For eg: GCC provides some atomic builtins :

● __atomic_compare_exchange
● __atomic_fetch_add
● __atomic_test_and_set
● __atomic_is_lock_free
… and many more

Read more about them here:
https://gcc.gnu.org/onlinedocs/gcc-4.8.2/gcc/_005f_005fatomic-Builtins.html

We will see more such standard APIs later

https://gcc.gnu.org/onlinedocs/gcc-4.8.2/gcc/_005f_005fatomic-Builtins.html

Read-Copy-Update(RCU) in Linux

Read-Copy-Update(RCU) in Linux
● Another synchronization mechanism, added to linux kernel in 2002

● Supports concurrency between multiple reader and a single updater

● no over-head from read-side primitive

● considered as one of the safest data-structures

● uses cache-line and memory very efficiently

● provides lock-free read critical section

● locks when a writer is compatible with readers

● preemption is not allowed in the read critical section

RCU : Motivation
Lets see an example of simple pointer update

memory allocator
in kernel

safely stores the pointer
such that the operation
is propagated to all
concerned threads

Source: Link

https://arxiv.org/pdf/1701.00854

RCU : Motivation
Freeing the pointer

How do you do that ?
read sec 9.5.1.3 : Link

https://arxiv.org/pdf/1701.00854

RCU Core APIs

Quick Question: Can you use RCU in user space ?

Properties of RCU

● Reads need not wait for updates
○ provides low-cost/no-cost readers leading to low overhead and great

scalability
○ allows RCU readers and updaters to make useful concurrent forward

progress.

● Each reader has a coherent view of each object
○ Ensured by:

■ maintaining multiple versions of objects
■ using update-side primitives like synchronize_rcu() to ensure

objects are not freed until all readers have completed

RCU Fundamentals

● Publish-Subscribe Mechanism
○ Readers are subscribers →

subscribing to the current
version of the RCU-protected
data item

○ Updaters are publishers

RCU Fundamentals

● Wait For Pre-Existing RCU Readers

“The great advantage of RCU is that it can wait for each of (say) 20,000
different things without having to explicitly track each and every one of
them, and without having to worry about the performance degradation,
scalability limitations, complex deadlock scenarios, and memory-leak
hazards that are inherent in schemes using explicit tracking”

● Maintain Multiple Versions of Recently Updated Objects

Outline
• Lock-Free Primitives

■ Hardware
■ Software

• Read-Copy-Update(RCU) in Linux
• Lock-Free APIs in Programming Languages

■ Java
■ C/C++

• Problems with lock-free programming
• Uses of lock-free programming

Lock-Free APIs in Programming Languages

Lock-Free APIs in Java

● numerous packages consisting of lock-free primitives
● one such is java.util.concurrent.atomic

○ provides various features like atomic integers, booleans, references etc.
○ Examples:

i) AtomicInteger
Provides atomic operations on an integer, such as get(), set(),
incrementAndGet(), and compareAndSet()

AtomicInteger atomicInt = new AtomicInteger(0);
int currentValue = atomicInt.get();
atomicInt.incrementAndGet();
boolean success = atomicInt.compareAndSet(0, 1);

Lock-Free APIs in Java (contd.)
ii) AtomicReference
Provides atomic operations on objects or references to objects. This is useful for
lock-free linked data structures

AtomicReference<String> atomicRef = new AtomicReference<>("initial");
boolean success = atomicRef.compareAndSet("initial", "updated");

Similarly, there are multiple functionalities like AtomicBoolean,
AtomicLong etc. Read more

https://download.java.net/java/early_access/panama/docs/api/java.base/java/util/concurrent/atomic/package-summary.html

Lock-Free APIs in C/C++
● in C++ we have the atomic library for lock-free programming
● std::atomic provides various atomic data types like:

○ atomic_int
○ atomic_bool
○ atomic_char
○ atomic_intptr_t

…
● provides templatized access to atomic primitives

○ i.e. std::atomic<T>
○ can use with user defined data types (UDT) !!

Lock-Free APIs in C/C++ (contd.)

What ??

Lock-Free APIs in C/C++ (contd.)

Lock-Free APIs in C/C++ : Example
#include <atomic>
std::atomic<int> counter(0); // Atomic shared counter
void increment() {
 for (int i = 0; i<1000; i++)
 ++counter; // Atomic increment (lock-free)
}

int main() {
 std::vector<std::thread> threads;
 for (int i = 0; i < 100; ++i) {
 threads.push_back(std::thread(increment));
 }
 for (auto& t : threads) {
 t.join();
 }
 std::cout << "Final counter value: " << counter << std::endl;
 return 0;
}

Problems with Lock-Free Programming
● Usually, it is hard to write lock-free code

● It is even harder to write correct lock-free code

● Spin-Locks causes heavy memory usage

● Overall-performance can go down in some cases compared to mutexes

● ABA Problem may occur in some cases

How to decide between lock-based and
lock-free?

Lock-Based vs Lock-Free

● Observe the number of threads:
○ If number of threads are very high then lock-free may be better

● Observe the contention period:
○ If low then opt for lock-free otherwise, use lock-based (why?)

Rule of Thumb: Test your code and measure the performance

References
● Is Parallel Programming Hard, And, If So, What Can You Do About It? By

Paul Mckenney

● C++ Concurrency in Action By Anthony Williams

● std::atomic - cppreference

● More about RCU - Link

● An awesome step-by-step guide to Lock-Free Programming - Link

https://arxiv.org/pdf/1701.00854
https://www.manning.com/books/c-plus-plus-concurrency-in-action
https://en.cppreference.com/w/cpp/atomic/atomic
https://www.kernel.org/doc/html/latest/RCU/whatisRCU.html
https://www.1024cores.net/home/lock-free-algorithms/introduction

