
Introduction to Lock-Free
Programming

Mainack Mondal
Sandip Chakraborty

CS 60203
Autumn 2024

Outline
• Locks in OS

■ What are locks and why are they required?
■ Different types of Locks
■ Why are Locks Bad?

• Lock-Free Programming
■ Definition, Different Lock Free Primitives
■ Examples of lockless Data Structures
■ Advantages
■ Problems

Locks in Operating Systems

The Synchronization Problem
In simple terms, it refers to keeping different threads on same page
Let’s understand this with an example:

Consider a simple banking application:
● Basically, it allows you to withdraw/deposit money
● Multi-threaded, centralized architecture
● All deposits/withdrawal sent to central server

What do you think will happen, if two person try deposit money to the same
account at the same time ?

The Synchronization Problem (contd.)
balance = balance + sum;

mov eax, balance
mov ebx, sum
add eax, ebx
mov balance, eax mov eax, balance

mov ebx, sum

add eax, ebx
mov balance, eax

mov eax, balance
mov ebx, sum
add eax, ebx
mov balance, eax

Context Switch

Context Switch

Thread 1 : deposit(Rs. 50) Thread 2 : deposit(Rs. 100)

What is the final amount
stored in variable “balance”?

The Synchronization Problem (contd.)

What problem did we see previously?
● A Race Condition
● Two Threads tries to update balance at the same time.
● Errors emerge based on the ordering of operations, and the

scheduling of threads
● These errors are thus non-deterministic

We call this problem “The Synchronization Problem”, in other words the
critical section problem.

The question is … How do you solve it ?

Atomicity
Race conditions lead to
unexpected errors when sections
of code are interleaved

These errors can be avoided by
ensuring the code is executed
atomically

Read

Add

Store

Read

Add

Store

Read

Add

Store

Read

Add

Store

Interleaved Execution Non-Interleaved (atomic) Execution

How to ensure atomicity?

Ensuring Atomicity: Locks
As the name suggests, locks:
● “lock” the critical section
● thus, barring other threads from entering it

Critical
Section

Context Switch

Thread 1 Thread 2

Critical
Section

Blocked

lock()

unlock()

Fixing the Bank Example

func deposit(int sum){
lock(lock_ctx);
balance = balance + sum;
unlock(lock_ctx);

}

Thread 1 Thread 2

Types of Locks
● Mutex Locks

○ short for Mutual Exclusion
○ a type of lockable object, can be owned by exactly one thread at a time
○ When the mutex is locked, any attempt to acquire the lock will fail
○ The thread which has locked the mutex, can only unlock it

● Spin Locks
○ a special type of mutex
○ do not use OS synchronization functions when a lock operation has to wait
○ keeps trying to update the mutex data structure to take the lock in a loop
○ efficient if lock is not held very often, or is only held for very short periods

(why?)

Types of Locks (contd.)
● Semaphores

○ relaxed type of lockable object
○ maintains a counter
○ allows threads to enter critical section unless, counter goes to zero
○ when counter goes to zero, thread has to wait
○ Two main operations (both atomic):

■ wait - decrements the counter
■ signal - increments the counter

How are binary semaphore (counter = 1) different from mutex lock ?

But …
Why switch to Lock-Free Programming?

Problems with Locks

● Locks cause Deadlocks

Image credits: scaler.com

● Locks sometimes causes performance bottlenecks
(Source: why-mutex-lock-on-c-affects-multithreading-efficiency-so-badly)

https://stackoverflow.com/questions/74521674/why-mutex-lock-on-c-affects-multithreading-efficiency-so-badly

Problems with Locks (Contd.)
● Mutex locks cause context switches

Eg: For a testbench with 100 threads with each updating a shared variable 1000 times
perf benchmark:

Other Issues:
● It also causes busy waiting
● Semaphores causes priority inversion problem
● Locks can cause starvation

Configuration Context Switches Task Clock Instruction per cycle CPU Frequency

With Lock 5,965 163.53 ms 0.51 1.849 GHz

Without Locks 9 6.98 ms 0.95 2.939 GHz

Outline
• Locks in OS

■ What are locks and why are they required?
■ Different types of Locks
■ Why are Locks Bad?

• Lock-Free Programming
■ Definition, Different Lock Free Primitives
■ Examples of lockless Data Structures
■ Advantages
■ Problems

Lock-Free Programming (Slides partially taken from Geoff Lang, CMU)

What is Lock-Free Programming?
● Thread-safe access to shared data without the use of synchronization

primitives such as mutexes
● Possible but not practical in the absence of hardware support
● Example: Lamport’s “Concurrent Reading and Writing”

○ CACM 20(11), 1977
○ describes a non-blocking buffer
○ limitations on number of concurrent writers

How do you design lock-free algorithms?

Lock-Free Programming
The simple answer is you don’t !!

● Usually, designing them is hard.

Rather, we design lock free data structures
● eg: stack, queue, buffer, map, deque etc.

But … how do you design them?
Well, you use lock-free primitives

Lock-Free Primitives
● Compare and Swap (CAS)

○ Most basic lock - free primitive
○ It's an instance of so-called atomic RMW (read-modify-write) operation
○ Pseudocode:

compare-and-swap(T* location, T cmp, T new){
 // do atomically (in hardware)
 {
 T val = *location;
 if (cmp == val)
 *location = new;
 return val;
 }
}

We will see how to use it
with an example

Lock-Free Primitives (Contd.)
● Fetch and Add

○ another lock - free primitive
○ Basically, used for atomic addition (uses hardware support)
○ Pseudocode:

fetch-and-add(T* location, T x)
{
 // do atomically (in hardware)
 {
 T val = *location;
 *location = val + x;
 return val;
 }
}

Used in atomic counters

Lock-Free Primitives (Contd.)
● Load-Linked (LL) and Store-Conditional (SC)

○ Special Instructions in Hardware (MIPS)

○ Load Linked:
■ Similar to typical load operation
■ Fetches data from memory and puts in the register
load-linked(T* ptr){

return *ptr;
}

Lock-Free Primitives (Contd.)
○ Store Conditional:

■ It is different from normal store instruction
■ it succeeds if no intervening store to the address has taken place

store-conditional(T* ptr, T value){
if (no update to *ptr since LL to this addr) {

*ptr = value;
 return 1; // success!

} else {
 return 0; // failed to update

}
}

How do you use LL-SC to create locks?

Lock-Free Primitives (Contd.)
lock(lock_t *lock) {

while (1) {
while (load-linked(&lock->flag) == 1); // spin until it’s zero

if (store-conditional(&lock->flag, 1) == 1)

return; // if set-to-1 was success: done
 // otherwise: try again

}
}

unlock(lock_t *lock) {
lock->flag = 0;

}

What is this code doing?

Lock-Free Data Structures: Stack
struct Node
{

Node * next;
int data;

};

Node * head;
// points to the first node

void push(int t)
{

Node* node = new Node(t);
do {

node->next = head;
}
while (!cas(&head, node->next, node));

}

Lock-Free Stack (Contd.)
bool pop(int& t) {

Node* current = head;
while(current) {

if(cas(&head, current, current->next)) {
 t = current->data;
 delete current;

 return true;
}
current = head;

}
return false;

}

Do you see any problem
here?

ABA Problem
● Thread 1 looks at some shared variable, finds that it is ‘A’

● Thread 1 calculates some interesting thing based on the fact that the
variable is ‘A’

● Thread 2 executes, changes variable to B
(if Thread 1 wakes up now and tries to compare-and-set, all is
well – compare and set fails and Thread 1 retries)

● Instead, Thread 2 changes variable back to A!

● OK if the variable is just a value, but…

ABA Problem (Contd.)
In our example, variable in question is the stack head

● It’s a pointer, not a plain value!

ABA Problem (Contd.)
How do solve this problem?
● Work-arounds

○ Keep a ‘update count’ (needs ‘doubleword CAS’)
○ Don’t recycle the memory ‘too soon’

● Theoretically not a problem for LL/SC-based approaches
○ However, note the term “Theoretically”
○ Practically, no ideal implementation of LL-SC
○ Hence, leads to spurious failures

References: Lock-Free Data
Structures

https://www4.cs.fau.de/Lehre/WS16/PS_KVBK/papers/paper-ok.pdf
https://www4.cs.fau.de/Lehre/WS16/PS_KVBK/papers/paper-ok.pdf

Advantages of Lock-Free Programming
● No/Less Context-Switches

● Higher CPU frequency and throughput

● No Deadlocks or Priority Inversions

● Faster Multicore Programming

