Introduction to Lock-Free
Programming

Mainack Mondal
Sandip Chakraborty

CS 60203
Autumn 2024

Outline

e | ocks in OS
s What are locks and why are they required”

s Different types of Locks
s Why are Locks Bad”?

¢ | ock-Free Programming
s Definition, Different Lock Free Primitives
s Examples of lockless Data Structures
s Advantages
m Problems

Locks in Operating Systems

The Synchronization Problem

In simple terms, it refers to keeping different threads on same page
Let’s understand this with an example:

Consider a simple banking application:
e Basically, it allows you to withdraw/deposit money
e Multi-threaded, centralized architecture
e All deposits/withdrawal sent to central server

What do you think will happen, if two person try deposit money to the same
account at the same time ?

The Synchronization Problem (contd.)

balance = balance + sum;

mov eax, balance
mov ebx, sum
add eax, ebx
mov balance, eax

Thread 1 : deposit(Rs. 50)

Thread 2 : deposit(Rs. 100)

What is the final amount
stored in variable “balance”?

mov eax,
mov ebx,

add eax,

mov balance, eax

balance
sum

| Context Switch >

mov eax, balance
mov ebx, sum
add eax, ebx
mov balance, eax

< Context Swi

tch |

ebx

The Synchronization Problem (contd.)

What problem did we see previously?
e A Race Condition
e [wo Threads tries to update balance at the same time.
e [Errors emerge based on the ordering of operations, and the
scheduling of threads
e T[hese errors are thus non-deterministic

We call this problem “The Synchronization Problem”, in other words the
critical section problem.

The questionis ... How do you solve it 7

Atomicity

Race conditions lead to These errors can be avoided by
unexpected errors when sections ensuring the code is executeo
of code are interleaved atomically

_

Read

[] —_—
Read Add

—_

Add Store
: Read
Add
Add

Store —
v Store
Store

Interleaved Execution Non-Interleaved (atomic) Execution

How to ensure atomicity?

Ensuring Atomicity: Locks

As the name suggests, locks:
e “lock” the critical section
e thus, barring other threads from entering it

Thread 1 Thread 2
lock() | Mo Swien
Critical Blocked
Section

unlock() ————

Critical
Section

Fixing the Bank Example

Thread 1 Thread 2

func deposit(int sum){
lock (lock_ctx);
balance = balance + sum;
unlock(lock_ctx);

}

Types of Locks

e Mutex Locks
o short for Mutual Exclusion

o atype of lockable object, can be owned by exactly one thread at a time
o When the mutex is locked, any attempt to acquire the lock will fail
o The thread which has locked the mutex, can only unlock it

e Spin Locks
o a special type of mutex

o do not use OS synchronization functions when a lock operation has to wait

o keeps trying to update the mutex data structure to take the lock in a loop

o efficient if lock is not held very often, or is only held for very short periods
(why?)

Types of Locks (contd.)

e Semaphores
o relaxed type of lockable object

maintains a counter

allows threads to enter critical section unless, counter goes to zero
when counter goes to zero, thread has to wait

Two main operations (both atomic):

m walt - decrements the counter

m signal - increments the counter

O O O O

How are binary semaphore (counter = 1) different from mutex lock ?

But ...
Why switch to Lock-Free Programming?

Problems with Locks

Resource
1

holds needs

e | ocks cause Deadlocks

Process 1 Process 2

needs holds

Resource
2

Image credits: scaler.com

e [ocks sometimes causes performance bottlenecks
(Source: why-mutex-lock-on-c-affects-multithreading-efficiency-so-badly)

https://stackoverflow.com/questions/74521674/why-mutex-lock-on-c-affects-multithreading-efficiency-so-badly

Problems with Locks (Contd.)

e Mutex locks cause context switches

EQ: For a testbench with 100 threads with each updating a shared variable 1000 times
perf benchmark:

Configuration Context Switches | Task Clock Instruction per cycle | CPU Frequency
With Lock 5,965 163.53 ms 0.51 1.849 GHz
Without Locks 9 6.98 ms 0.95 2.939 GHz

Other Issues:
e [t also causes busy waiting
e Semaphores causes priority inversion problem
e [ocks can cause starvation

Outline

e [ocks in OS
s What are locks and why are they required?

m Different types of Locks
s Why are Locks Bad?

¢ Lock-Free Programming
s Definition, Different Lock Free Primitives
s Examples of lockless Data Structures
s Advantages
s Problems

LOC k' Free PrOg ra mm i n g (Slides partially taken from Geoff Lang, CMU)

What is Lock-Free Programming®?

e [hread-safe access to shared data without the use of synchronization
primitives such as mutexes

e Possible but not practical in the absence of hardware support

e Example: Lamport’s “Concurrent Reading and Writing”
o CACM 20(11), 1977

o describes a non-blocking buffer
o limitations on number of concurrent writers

How do you design lock-free algorithms?

Lock-Free Programming

The simple answer is you don’t !!
e Usually, designing them is hard.

Rather, we design lock free data structures
e ¢cQ: stack, queue, buffer, map, deque etc.

But ... how do you design them?
Well, you use lock-free primitives

Lock-Free Primitives

e Compare and Swap (CAS)
o Most basic lock - free primitive
o It's an instance of so-called atomic RMW (read-modify-write) operation
o Pseudocode:

compare-and-swap(T* location, T cmp, T new){
// do atomically (in hardware)

{
T val = *location; . .
if (cmp == val) We will see how to use it
*location = new; with an example
return val;
}

Lock-Free Primitives (Contd.)

e Fetch and Add
o another lock - free primitive
o Basically, used for atomic addition (uses hardware support)
o Pseudocode:

fetch-and-add(T* location, T x)
{

// do atomically (in hardware)

{
T val = *location; Used in atomic counters
*location = val + x;
return val;
}
}

Lock-Free Primitives (Contd.)

e Load-Linked (LL) and Store-Conditional (SC)
o Special Instructions in Hardware (MIPS)

o Load Linked:
m Similar to typical load operation
m [etches data from memory and puts in the register

load-linked(T* ptr){
return *ptr;
}

Lock-Free Primitives (Contd.)

o Store Conditional:
m [t is different from normal store instruction
m it succeeds if no intervening store to the address has taken place

store-conditional(T* ptr, T value){
if (no update to *ptr since LL to this addr) {
*ptr = value;
return 1; // success!
} else {
return 0; // failed to update
}

}

How do you use LL-SC to create locks?

Lock-Free Primitives (Contd.)

lock(lock_t *lock) {
while (1) {
while (load-linked(&lock->flag) == 1); // spin until it's zero

if (store-conditional(&lock->flag, 1) == 1)
return: // if set-to-1 was success: done
// otherwise: try again

unlock(lock_t *lock) { \N\(\a“
lock->flag = 9;

}

Lock-Free Data Structures: Stack

struct Node

{
Node * next;
int data;

}s

Node * head;

// points to the first node

void push(int t)

{
Node* node = new Node(t);
do {
node->next = head;
}
while (!cas(&head, node->next, node));
}

Thread 2

Thread 1

Lock-Free Stack (Contd.)

bool pop(int& t) {
Node* current = head;
while(current) {

t = current->data;
delete current;
return true;

}

current = head;

}

return false;

if(cas(&head, current, current->next)) {

<

Do you see any problem
here”

ABA Problem

e [hread 1 looks at some shared variable, finds that it is ‘A

e Thread 1 calculates some interesting thing based on the fact that the
variable is ‘A

e [hread 2 executes, changes variable to B
(if Thread 1 wakes up now and tries to compare-and-set, all is
well — compare and set fails and Thread 1 retries)

e |Instead, Thread 2 changes variable back to Al

e OKf the variable is just a value, but...

ABA Problem (Contd.)

In our example, variable in question is the stack head
e [t's a pointer, not a plain value!

Thread 1: pop() Thread 2:
read A from head

store A.next ‘somewhere"\\\\‘

pop()
pops A, discards it
First element becomes B

memory manager recycles
‘A’ into new variable

Pop(): pops B
cas with A suceeds @um===Push(head, A)

ABA Problem (Contd.)

How do solve this problem?

e Work-arounds
o Keep a ‘update count’ (needs ‘doubleword CAS’)
o Don’t recycle the memory ‘too soon’

e Theoretically not a problem for LL/SC-based approaches
o However, note the term “Theoretically”
o Practically, no ideal implementation of LL-SC
o Hence, leads to spurious failures

References: L ock-Free Data
Structures

https://www4.cs.fau.de/Lehre/WS16/PS_KVBK/papers/paper-ok.pdf
https://www4.cs.fau.de/Lehre/WS16/PS_KVBK/papers/paper-ok.pdf

Advantages of Lock-Free Programming

e No/Less Context-Switches
e Higher CPU frequency and throughput
e No Deadlocks or Priority Inversions

e [aster Multicore Programming

