
Tuning CPU Performance:
Introduction to SIMD Optimization

Mainack Mondal
Sandip Chakraborty

CS 60203
Autumn 2024

Outline
• CPU Performance Optimization

• Motivation

• SIMD Overview
■ What is SIMD?
■ Data Types in SIMD Programming
■ Instructions
■ Example

CPU Performance Optimization
(Slides partially taken from Marat Dukhan)

Components of CPU Performance

Peak FLOPs =

Number of Cores ✕

FLOPs per Instruction ✕

Instructions per cycle ✕

Cycles per second

Task Level Parallelism

SIMD and FMA

Instruction Level
Parallelism

Frequency

CPU Optimization 101

● Task-Level Parallelism (across cores)

○ Cilk, Cilk++

○ OpenMP

● Instruction-Level Parallelism

○ Reordering

○ Out-of-Order Execution

○ Speculative Execution

○ Branch Prediction

● SIMD

Motivation
(Slides partially taken from Lukas Pietzschmann)

Motivation

Lets see an example code:

void mul4(float* arr) {
for(int i=0; i < 4; ++i) {

const float f = arr[i];
arr[i] = f * f;

}
}

Problems ?

Why is it bad?
● Short Loops are bad. Why?

○ Branch Prediction fail often

● Unnecessary extra instructions
○ Many load/store Instructions
○ Unnecessary add instructions

Lets Make It Better

But how? Unroll Loops

void mul4(float* arr) {
arr[0] = arr[0] * arr[0];
arr[1] = arr[1] * arr[1];
arr[2] = arr[2] * arr[2];
arr[3] = arr[3] * arr[3];

}

Problems ?

Why is it good ?
● No branches to predict
● No loops

Why is it bad ?
● Bad Machine Code
● Too many load/store instructions

Can we do even better ?

Making It Even Better
🛸 Enters SIMD 🛸

void mul4(float* vec) {
__m128 f = _mm_loadu_ps(vec);
f = _mm_mul_ps(f, f);
_mm_storeu_ps(vec, f);

}

mul4:
 movups xmm0, XMMWORD PTR [rdi]
 mulps xmm0, xmm0
 movups XMMWORD PTR [rdi], xmm0
 ret

Assembly
(approximate)

Why is it even better ?

● No loops

● No branches to predict

● Nice machine code

● We square all floats at once

Performance

TestBench: Dot Product of two vectors, each of size 256,000

On an average:
○ SSE: 2.5x speed increase
○ AVX: 4x speed increase

Description Time (in μs)

Regular floating point math 439

SSE dpps instruction 181

AVX vdpps instruction 103

Credits: Improving performance with
SIMD intrinsics in three use cases

https://stackoverflow.blog/2020/07/08/improving-performance-with-simd-intrinsics-in-three-use-cases
https://stackoverflow.blog/2020/07/08/improving-performance-with-simd-intrinsics-in-three-use-cases

Outline
• CPU Performance Optimization

• Motivation

• SIMD Overview
■ What is SIMD?
■ Data Types in SIMD Programming
■ Instructions
■ Example

SIMD Overview

What is SIMD?
SIMD : Single Instruction Multiple Data

Comes from Flynn’s Taxonomy of types of Computing Systems:

Single Data Stream Multiple Data Stream

Single Instruction SISD: Intel Pentium 4 SIMD: SSE/AVX in x86

Multiple Instruction MISD: No examples MIMD: Intel Xeon Phi

SIMD in C/C++
Intrinsics:
● Usually implemented “inside” the computer.
● Allow for better optimisations than raw inline assembly
● Provide access to instructions that cannot be generated using

the standard constructs

Compiler Support for SIMD in C/C++

● Compiler provides options like -march=corei7 (gcc/clang)
● Provides two main functions:

○ maps directly to extended assembly instructions upto SSE4.2
○ allows the compiler to optimize programs using these instructions

Auto-Vectorization:
● Compiler automatically uses these instructions for optimization
● Ever wondered what happens when you use the “-O3” flag

○ Compiler tries for auto-vectorization (there is a catch)

SIMD Data Types

16 bytes 32 bytes

32 bit float __m128 __m256

64 bit double __m128d __m256d

32/64 bit integer __m128i __m256i

SSE2

● CPU doesn’t distinguish between __m128, __m128d and __m128i
○ This information is only used for type checking

● Compiler automatically assigns the values to registers
○ [Caution] Only 16 (8+8) registers underneath the compiler (Why caution?)

SIMD Instructions: Loading From Memory

void mul4(float* vec) {

__m128 f = _mm_loadu_ps(vec);

f = _mm_mul_ps(f, f);
_mm_storeu_ps(vec, f);

}
We can load:
● four values aligned
● four values unaligned
● four values in reverse
…

Arithmetic Operations
void mul4(float* vec) {

__m128 f = _mm_loadu_ps(vec);

f = _mm_mul_ps(f, f);

_mm_storeu_ps(vec, f);
}

Examples of arithmetic operations:
● __mm_mul_ps
● __mm_add_ps
● __mm_min_ps

In general, such instructions have the following structure:

__mm_ _ Operation (eg: mul,
min, sqrt)

Packed(ps,pd)
or Scalar(ss,sd)

Storing To Memory

void mul4(float* vec) {
__m128 f = _mm_loadu_ps(vec);
f = _mm_mul_ps(f, f);

_mm_storeu_ps(vec, f);
}

We can store:
● four values aligned
● four values unaligned
● four values in reverse
…

An Example
#include <immintrin.h> Header to be included

float* add(const float* a, const float* b, size_t size) {
float* result = new float[size];
const auto numof_vectorizable_elements = size - (size % 4);
unsigned i = 0;
for (; i < numof_vectorizable_elements; i += 4) {

__m128 a_reg = _mm_loadu_ps(a + i);
__m128 b_reg = _mm_loadu_ps(b + i);
__m128 sum = _mm_add_ps(a_reg, b_reg);
_mm_storeu_ps(result + i, sum);

}
for (; i < size; ++i)

result[i] = a[i] + b[i];
return result;

}

Compile with flags:
-mavx or -mavx2

But… Where do we use SIMD?
The simple answer is : Where the performance of your program is
dependent on CPU
Example:

● Cryptographic Computations
○ SHA Computations, Elliptic Curve Operations

● Graphics
○ Processing 3D graphics, audio/video etc.

● Machine Learning
○ Neural Networks
○ Image Processing
○ …

and many more …

