Just In Time Compilation

Mainack Mondal
Sandip Chakraborty

CS 60203
Autumn 2024

Today’s class

- Interpreted Languages, and VMs
- Why Interpreters?
- Interpreters can be slow :(

- What is Just-In-Time compilation?
- To JIT, or not to JIT
- Startup-time vs Execution-time tradeoff
- Memory Requirements tradeoff

- How to design a JIT Compiler?
- Case study 1: V8 JIT Explained
- Case study 2: Copy-and-Patch in CPython JIT

Interpreted Languages and VMs

Compiled languages are a bottleneck

Compilation of source code into object code by
the compiler

- Wikipedia

(.why not say machine code?)

Compiled languages are a bottleneck

Compilation of source code into object code by
the compiler

- Wikipedia
(.why not say machine code?)

Solution: interpreted languages (Python, Java..)

What is an Interpreter? -Wikipedia

In computer science, an 1interpreter 1s a
computer program that directly executes
instructions written in a programming or
scripting language, without requiring them
previously to have been compiled into a machine
language program

- Wikipedia

What is an Interpreter? -Theory people

An interpreter/VM is a program that consumes a
series of instructions, and executes them
against an abstract machine

Essentially VM emulates an abstract machine,
and the behavior of the abstract machine itself
is specified, for operations, and operands

Why (do we need) an Interpreter?

-Systems people

Why Interpreters?

...they make life easy :)

As implementing certain features becomes
simpler!

Why Interpreters?

- Platform Independence

- Reflection (we'1ll talk about this)

- Dynamic Typlﬂg (i.e. finding and/or changing types at runtime)
- Easy debugging and profiling

- Easier CONCUrrencCy (concurrency is never easy)

- Small program size

- Automatic memory management (already talked about this)

Case #1 for interpreted languages

Platform Independence

Compiler: Platform dependent code :((

https://qodbolt.orgq/z/YbMebMo47

Even the square function changes :(

https://godbolt.org/z/YbMebMo47

Interpreter: Platform independent code :)

Java bytecode is same everywhere :)

(...but what is bytecode?)

Case #2 for interpreted languages

More runtime type-information => Powerful
features, and safety

Runtime Type Information

Type Objects

| type PyTypeObject

Type Information can be ettt st

Part of the Limited AP| (as an opaque struct).

StOred as aCtual OijCt PyTypeObject PyType_Type

Part of the Stable ABI.

i n t h e 1 a n g u a g e r u n t i m e ! This is the type object for type objects; it is the same object as type in the Python layer.

int PyType_Check(Pyobject *o)
Return non-zero if the object ois a type object, including instances of types derived from the standard type

object. Return O in all other cases. This function always succeeds.

int PyType_CheckExact (PyObject *o)

Return non-zero if the object ois a type object, but not a subtype of the standard type object. Return 0 in all

A 1 1 O W S -F O r d yn a m i c t yp e s) other cases. This function always succeeds.

. o unsigned int PyType_ClearcCache()
dynamlc d 1spatCh ’ and Part of the Stable ABI.
r e f 1 e c t i O n (a m O n g O -t h e r Clear the internal lookup cache. Return the current version tag.

things)

Part of the Stable ABI.

Return the tp_flags member of type. This function is primarily meant for use with Py_LIMITED_API; the
individual flag bits are guaranteed to be stable across Python releases, but access to tp_flags itself is not

part of the limited API.

TVDe Ob-leCtS - P\/thon 3.12.4 documentatlon IAddedinvers/on.?.Z,

| Changed in version 3.4: The return type is now unsigned long rather than long.

https://docs.python.org/3/c-api/type.html#c.PyTypeObject

Reflection

import java.lang.reflect.*;

Essentially source code |
public class DumpMethods {

that “int rOSpeCtS" / public static void main(String args[])
"manipulates” source Yoy
COde Class ¢ = Class.forName(args[0]);

Method m[] = c.getDeclaredMethods();

for (int 1 = 0; 1 < m.length; i++)
System.out.println(m[i].toString());
}
catch (Throwable e) {
System.err.println(e);

}

getting the methods, using a method }
}

Reflection in C++ is hard!

= There are several problems with reflection in C++.

e It's a lot of work to add, and the C++ committee is fairly conservative, and don't spend time on
radical new features unless they're sure it'll pay off. (A suggestion for adding a module system
similar to .NET assemblies has been made, and while | think there's general consensus that
it'd be nice to have, it's not their top priority at the moment, and has been pushed back until
well after C++0x. The motivation for this feature is to get rid of the #include system, but it

668

v

V would also enable at least some metadata).

e You don't pay for what you don't use. That's one of the must basic design philosophies Why does C++ not have
underlying C++. Why should my code carry around metadata if | may never need it? reflection? - Stack
Moreover, the addition of metadata may inhibit the compiler from optimizing. Why should | pay Overflow
that cost in my code if | may never need that metadata?

Which leads us to another big point: C++ makes very few guarantees about the compiled
code. The compiler is allowed to do pretty much anything it likes, as long as the resulting
functionality is what is expected. For example, your classes aren't required to actually be
there. The compiler can optimize them away, inline everything they do, and it frequently does
just that, because even simple template code tends to create quite a few template
instantiations. The C++ standard library relies on this aggressive optimization. Functors are
only performant if the overhead of instantiating and destructing the object can be optimized
away. operator[] on a vector is only comparable to raw array indexing in performance

https://stackoverflow.com/questions/359237/why-does-c-not-have-reflection
https://stackoverflow.com/questions/359237/why-does-c-not-have-reflection
https://stackoverflow.com/questions/359237/why-does-c-not-have-reflection

Reflection in C++ is hard...but not impossible!

Reflection for C++26

Document #: P2996R0O
Date: 2023-10-15
Project: Programming Language C++
Audience: EWG
Reply-to: Wyatt Childers
<wcc@edg.com>
Peter Dimov
<pdimov@gmail.com>
Barry Revzin
<barry.revzin@gmail.com>
Andrew Sutton
<andrew.n.sutton@gmail.com>
Faisal Vali
<faisalv@gmail.com> -
Daveedvjndevoorde Reflectlon fO r C++26

<daveed@edg.com>

Contents

1 Introduction
1.1 Notable Additions to P1240
1.2 Why a single opaque reflection type?
2 Examples
2.1 Back-And-Forth
2.2 Selecting Members
2.3 List of Types to List of Sizes
2.4 Implementing make_integer_sequence
2.5 Getting Class Layout
2.6 Enum to String
2.7 Parsing Command-Line Options
2.8 A Simple Tuple Type
2.9 Struct to Struct of Arrays
2.10 Parsing Command-Line Options II
2.11 A Universal Formatter
2.12 Implementing member-wise hash_append
2.13 Converting a Struct to a Tuple
3 Proposed Features
3.1 The Reflection Operator (»)
3.2 Splicers (f:...:1)
3.2.1 Range Splicers
3.3 std: :meta: :info
3.4 Metafunctions

3.4.1 invalid_reflection, is_invalid, diagnose_error

3.4.2 name_of, display_name_of, source_location_of

343t pe_of, parent of, entity of

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2996r0.html

Case #3 for interpreted languages

Additional runtime accessible information, and
Instrumentation

Runtime Info: Code as a runtime object

static PyCodeObject *

makecode(_PyCompile_CodeUnitMetadata *umd, struct assembler *a, PyObject *const_cache,

PyObject *constslist,

int maxdepth, int nlocalsplus, int code_flags,

PyObject *filename)

PyCodeObject *co = NULL;
PyObject *names = NULL;
PyObject *consts = NULL;
PyObject *localsplusnames
PyObject *localspluskinds
names = dict_keys_inorder
if (!'names) {

goto error;
}
if (_PyCompile_ConstCachel

goto error;

consts = PyList_AsTuple(cq

if (consts == NULL) {
goto error;

}

if (_PyCompile_ConstCachel
goto error;

T+

struct _PyCodeConstructor con = {
.filename = filename,
.hame = umd->u_name,
.qualname = umd->u_qualname ? umd->u_qualname :
.flags = code_flags,

.code = a->a_bytecode,
.firstlineno = umd->u_firstlineno,

.linetable = a->a_linetable,

.consts = consts,

.names = names,

. localsplusnames = localsplusnames,

. localspluskinds = localspluskinds,

.argcount = posonlyargcount + posorkwargcount,
.posonlyargcount = posonlyargcount,
.kwonlyargcount = kwonlyargcount,

.stacksize = maxdepth,

.exceptiontable = a->a_except_table,

umd->u_name,

Interpreted
languages (can)
contain code as a
runtime object too!

For example, Python
has PyCodeObject,
that "wraps”®™ the
bytecode

This is from
Python/assemble.c

https://github.com/python/cpython/blob/main/Python/assemble.c

PyCodeObject, Docs

type PyCodeObject
The C structure of the objects used to describe code objects. The fields of this type are subject to change at

any time.

This is an instance of PyTypeObject representing the Python code object.

int PyCode_cCheck(Pyobject *co)

Return true if cois a code object. This function always succeeds. Code Objects —
Py_ssize_t PyCode_GetNumFree(PyCodeObject *co) Python 3.12.4
documentation

Return the number of free variables in a code object.

int PyCode_GetFirstFree(PyCodeObject *co)

Return the position of the first free variable in a code object.

PyCodeObject *PyUnstable_Code_New(int argcount, int kwonlyargcount, int nlocals,
int stacksize, int fTlags, PyObject *code, Py0Object *consts, PyGbject *names,
PyObject *varnames, PyObject *freevars, PyObject *cellvars, PyObject *filename,
PyObject *name, PyObject *qualname, int firstlineno, PyObject *linetable, PyObject
*exceptiontable)

https://docs.python.org/3/c-api/code.html
https://docs.python.org/3/c-api/code.html
https://docs.python.org/3/c-api/code.html

Instrumentation!

/* count of all local monitoring events */ Runtime information 1is

#define _PY_MONITORING_LOCAL_EVENTS 10 valuable to find if

/* Count of all "real" monitoring events (not derived from other events) */ Something unexpected

#define _PY_MONITORING_UNGROUPED_EVENTS 15 happened

/* Count of all monitoring events */

#define _PY_MONITORING_EVENTS 17 Or how often variables /
functions are used /

/* Tables of which tools are active for each monitored event. */ executed

typedef struct _Py_LocalMonitors {
uint8_t tools[_PY_MONITORING_LOCAL_EVENTS]; Recall, instrumentation

} _Py_LocalMonitors;
Python runtime also has

typedef struct _Py_GlobalMonitors { instrumentation using

uint8_t tools[_PY_MONITORING_UNGROUPED_EVENTS]; Py_*_Monitors
} _Py_GlobalMonitors;

https://github.com/python/cpython/blob/main/Include/cpython/code.h

Benefits from keeping code at runtime?

- Easier debugging, and program state inspection
- Simple to implement line-by-line profiling

- Simple to implement instrumentation

- (Spoiler) Just In Time Compilation!

Takeaway....

Interpreters nice

The issue...

Interpreters can be slow :(

Interpreter vs. Compiler

Let’'s compare Python and C?
NO
Because its apples to oranges

Compare CPython with Cython

- Cython uses (largely)the same syntax as CPython
- Cython compiles CPython into C, using C/Python

APT and then compiles C, and the executes!

https://docs.python.org/3/c-api/
https://docs.python.org/3/c-api/

Matrix multiplication: CPython

Ci = > o1 AitsBhy

where n is the number of columns in A and rows in B.
A basic implementation in pure Python looks like this:

def matmul (A, B, out):
for i in range(A.shapel[0O]):
for j in range(B.shapel[1l]):
s =0
for k in range(A.shape[1l]):
s += A[i, k] * B[k, j]
out[i,j]l = s

Matrix multiplication: Cython (simple compilation)

tmp = PyTuple_New(2);
if (!'tmp) { err_lineno = 21; goto error; }
Py_INCREF(i);
def matmul(A, B, out): PyTuple_SET_ITEM(tmp, O, i);
Py_INCREF (k) ;
PyTuple_SET_ITEM(tmp, 1, k);

for i in range(A.shape[0]):

for j in range(B.shape[1]): A_ik = PyObject_GetItem(A, tmp);
s =0 if ('A_ik) { err_lineno = 21; goto error; }
for k in range(A.shape[1]): Py_DECREF (tmp) ;

s +=[A[i, k]| * B[k, j]
out[i,j] = s

Direct compilation is (only) 1.15x faster
- lookup produces pointer to Python object
- and PyNumber_Multiply being used for PyObject

The situation gets way worse...
Interpreters get 700x slower ...

Reason #1

Type generality prevents optimization!

Matrix multiplication: Cython, machine types

import numpy as np
cimport numpy as np
ctypedef np.float64_t dtype_t
def matmul (np.ndarray[dtype_t, ndim=2] A,
np.ndarray[dtype_t, ndim=2] B,
np.ndarray[dtype_t, ndim=2] out=None):
cdef Py_ssize_t i, j, k
cdef dtype_t s
if A is None or B is None:
raise ValueError("Input matrix cannot be None")
for i in range(A.shape[0]):
for j in range(B.shape[1]):
s =0
for k in _range(A.shape[1]):
s +=|A[i, k] p B[k, j]
out[i,j] =s

tmp_i = 1i; tmp_k = k;

if (tmp_i < O0) tmp_i += A_shape_0O;

if (tmp_i < O || tmp_i >= A_shape_1) {
PyErr_Format(<...>);
err_lineno = 33; goto error;

}

if (tmp_k < 0) tmp_k += A_shape_1;

if (tmp_k < O || tmp_k >= A_shape_1) {
PyErr_Format(<...>);
err_lineno = 33; goto error;

5

A_ik = x(dtype_t*) (A_data +
tmp_i * A_stride_O + tmp_k * A_stride_1);

180-190x faster than CPython!

Bounds checking is slow :(

Reason #2

Interpreters can’t optimize out bounds checks!

(security bros get mad)

Matrix multiplication: Cython, no bounds check

cimport cython
Qcython.boundscheck(False) bounds check removed

Qcython.wraparound(False)

def matmul (np.ndarray[dtype_t, ndim=2] A,
np.ndarray[dtype_t, ndim=2] B,
np.ndarray[dtype_t, ndim=2] out=None):

Lus o

700-800x faster!

Today’s class

- What is Just-In-Time compilation?
- To JIT, or not to JIT

- Startup-time vs Execution-time tradeoff
- Memory Requirements tradeoff

- How to design a JIT Compiler?
- Case study 1: V8 JIT Explained
- Case study 2: Copy-and-Patch in CPython JIT

What is Just-in-Time compilation?

What is Just-in-Time compilation?

Just-In-Time compilation is compilation (of
computer code) during execution of a program
(at run time) rather than before execution

This may consist of source code translation
but 1s more commonly bytecode translation to
machine code, which 1s then executed
directly.

- Wikipedia

Refresher: Code as a runtime object

static PyCodeObject *

makecode(_PyCompile_CodeUnitMetadata *umd, struct assembler *a, PyObject *const_cache,

PyObject *constslist,

int maxdepth, int nlocalsplus, int code_flags,

PyObject *filename)

PyCodeObject *co = NULL;
PyObject *names = NULL;
PyObject *consts = NULL;
PyObject *localsplusnames
PyObject *localspluskinds
names = dict_keys_inorder
if (!'names) {

goto error;
}
if (_PyCompile_ConstCachel

goto error;

consts = PyList_AsTuple(cq

if (consts == NULL) {
goto error;

}

if (_PyCompile_ConstCachel
goto error;

T+

struct _PyCodeConstructor con = {
.filename = filename,
.hame = umd->u_name,
.qualname = umd->u_qualname ? umd->u_qualname :
.flags = code_flags,

.code = a->a_bytecode,
.firstlineno = umd->u_firstlineno,

.linetable = a->a_linetable,

.consts = consts,

.names = names,

. localsplusnames = localsplusnames,

. localspluskinds = localspluskinds,

.argcount = posonlyargcount + posorkwargcount,
.posonlyargcount = posonlyargcount,
.kwonlyargcount = kwonlyargcount,

.stacksize = maxdepth,

.exceptiontable = a->a_except_table,

umd->u_name,

Interpreted
languages (can)
contain code as a
runtime object too!

For example, Python
has PyCodeObject,
that "wraps”®™ the
bytecode

This is from
Python/assemble.c

https://github.com/python/cpython/blob/main/Python/assemble.c

What is Just-in-Time compilation?

<compilation> compiled code executes Compilation

code gets interpreted Interpreted

JIT Compiled

Just-in-Time compilation involves conversion of
(a part of) source/bytecode into machine code at
runtime (and not in advance)

To JIT, or not to JIT

Nno

code gets interpreted

Some
heuristic

yes

Interpreted

JIT Compiled

Interpreted languages get executed line-by-line (or
instruction-by-instructions) hence it is possible to
only compile parts of the code and interpret the rest

Startup-time vs Execution time tradeoff

Nno

Some
heuristic

yes

startup-time execution-time

Start-up time is the time taken by the JIT compiler to
produce the machine code

Execution time is time taken by the machine code to
execute

Startup-time vs Execution time tradeoff

The trade-off exists because it is possible to use

sophisticated compilers to produce optimized machine
code.

But such compilers would be slow to produce the
machine code.

Remember code objects? They also take up space :(

B Objects | Code
0 20 40 60 80 100

V8 heap usage by code-objects

V8: Hooking up the Ignition to
the Turbofan

https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing
https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing

Memory requirements tradeoff

- Code objects take up space.

- Compilers that produce unoptimized code fast,
produce a lot of code.

- Compilers that produce optimized code are too slow
to run in user facing scenarios :(

Today’s class

- How to design a JIT Compiler?
- Case study 1: V8 JIT Explained
- Case study 2: Copy-and-Patch in CPython JIT

How to design a JIT Compiler?

Refresher: Compilation Approaches

High-Level Language

{ Bytecode

full compilation
use case:
metaprogramming

assembly
use case:
WebAssembly

{ Machine Code }

bytecode assemblers

baseline compilers

Refresher: Compilation Approaches

{ High-Level Language

linearization ¢

Bytecode J

full compilation
use case:
metaprogramming

assembly
use case:
WebAssembly

Machine Code }

- Most databases go by the

pytecode route

- Python also goes the

This

pytecode route

is because writing

bytecode assemblers|is easier

than

baseline compilers

V8 JIT Explained

V8- 2007

-

Semi-optimized
Code

Baseline

V8- 2010

Optimize
Full- 7’
codegen J v
Unoptimized
Code

v Deoptimize _

~ -

—-— o

Baseline Optimized

V8-2010

They added optimizing
compiler

Full- 7’
codegen J v
Unoptimized
Code

Deoptimize _ -

~ -

-— -

Deoptimizer because, optimized
code isn’t always the best

Baseline

V8- 2015

Optimize
L2 ==T T T TS
Full- W‘
codegen J v
Unoptimized
Code

Baseline Optimized

Older, and simpler V8

Optimize
W‘ 2z=""7 s A great summary of
co';‘e"é,'en { the history of V8
J architecture, because

it can be confusing

V8: Hooking up
the Ignition to
the Turbofan

|

|

|

|

|

Unoptimized |
Code |
|

|

|

|

|

|

|

|

|

|

|

Baseline Optimized

https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing
https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing
https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing

Older, and simpler V8

Hot path: executes often

1. Can find from runtime info!
JavaScript Source 2. Initially all paths are cold

no yes

Full code-gen) TurboFan-CrankShaft
(Unoptimized machine (Optimizing
code) jJ continuous analysis = runtime info compiler)

V8 uses a “dumb” full code-gen to generate code fast,
hence leading to slower code, but faster execution time!

Takeaway: Start up time vs execution time
trade-off

Problem: Optimizing compilers are slow :((

baseline code SHEC o7

run optimizing compiler optimized code

hot path

user facing latency

Solution: Optimizing compilers on another thread

send to
: check f : .
baseline code i pat‘;r another baseline code oo optimized code
thread

user facing latency

run optimizing compiler

Even better: Profiling and Optimizing on other thread(s)

S . main thread

baseline code optimized code

send to
optimizer
thread

check for hot
path

run optimizing compiler

Even better: Profiling and Optimizing on other thread(s)

this is just a
pointer swap

main thread

baseline code

check for hot serlwdlto
optimizer

path thread

run optimizing compiler

we can use a
queue for this

Code object is submitted to a DispatcherQueue

__

' // Circular queue of incoming
Erecompilation tasks (including OSR).
' class VB_EXPORT
EOptimizingCompileDispatcherQueue {

send to
optimizer
thread

check for hot
path

run optimizing compiler

Eprivate:

TurbofanCompilationJob** queue_;
int capacity_;

int length_; : https://chromium.googlesource.c
int shift_; | om/v8/v8.git/+/refs/heads/main/
base: :Mutex mutex_: § src/compiler-dispatcher/optimiz

E}. § ing-compile-dispatcher.h

https://chromium.googlesource.com/v8/v8.git/+/refs/heads/main/src/compiler-dispatcher/optimizing-compile-dispatcher.h
https://chromium.googlesource.com/v8/v8.git/+/refs/heads/main/src/compiler-dispatcher/optimizing-compile-dispatcher.h
https://chromium.googlesource.com/v8/v8.git/+/refs/heads/main/src/compiler-dispatcher/optimizing-compile-dispatcher.h
https://chromium.googlesource.com/v8/v8.git/+/refs/heads/main/src/compiler-dispatcher/optimizing-compile-dispatcher.h

Code object is submitted to a DispatcherQueue

// Circular queue of incoming recompilation tasks (including OSR).
class V8_EXPORT OptimizingCompileDispatcherQueue {
public:

explicit OptimizingCompileDispatcherQueue(int capacity)
. capacity_(capacity), length_(0), shift_(0) {
queue_ = NewArray<TurbofanCompilationJob*>(capacity_);
}
~0ptimizingCompileDispatcherQueue() { DeleteArray(queue_); }
TurbofanCompilationJob* Dequeue();

void Enqueue(TurbofanCompilationJob* job);
void Flush(Isolate* isolate);
void Prioritize(Tagged<SharedFunctionInfo> function);

~ pasic queue ops

V8 moved optimizing compiler to another thread, and
only did a “"dumb” full code-gen in the main thread

Takeaway: Optimization compilers can be run
iIn other threads

Recall: Machine code takes memory :((

B Objects | Code

I

0 20 40 60 80 100

V8 heap usage by code-objects

V8: Hooking up the Ignition to
the Turbofan

https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing
https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing

Problem: V8 Engine memory issues

The V8 JavaScript Engine used to do a “full
code-gen , using the baseline compiler,
generating non-optimized machine code fast

JITed machine code can consume a significant
amount of memory, even if the code is only
executed once

Solution: Bytecode interpreter instead of full code-gen

- Bytecode is between 50% to 25% the size of
the equivalent baseline machine code.

- Bytecode is executed by Ignition which
yields execution speeds on real-world
websites close to those of code generated by
V8's existing baseline compiler

Introducing Interpreter: Less simple V8

Optimize Optimize

— S
’— ~~

-

= zZ - S

Full- |~ |
codegen i
Unoptimized |
Code I

i

|

|

|

|

|

|

|

|

Baseline Optimized Baseline Optimized

Firing up the
Ignition interpreter

https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/ignition-interpreter

Finally in 2017

Optimize

— —-—
-~——__———

Interpreted Optimized

Firing up the
Ignition interpreter

https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/ignition-interpreter

Takeaway: Memory requirement of machine
code is a trade-off

Copy-and-Patch: CPython JIT

Copy-and-Patch -The paper

(1) The concept of a binary stencil, which is a pre-built implementation of an AST node or
bytecode opcode with missing values (immediate literals, stack variable offsets, and branch
and call targets) to be patched in at runtime.

(2) An algorithm that uses a library with many binary stencil variants to emit optimized machine
code. There are two types of variants: one that enumerates different parameter configurations
(whether they are literals, in different registers, or on the stack) and one that enumerates
different code patterns (a single AST node/bytecode or a supernode of a common AST
subtree/bytecode sequence).

(3) An algorithm that linearizes high-level language constructs like if-statements and loops, and
generates machine code by composing multiple binary stencil fragments.

(4) A system called MetaVar for generating binary stencils, which allows the user to sys-
tematically generate the binary stencil variants in clean and pure C++, and leverages the
Clang+LLVM compiler infrastructure to hide all platform-specific low-level detail.

Copy-and-Patch -Systems people

Relatively recent research work on a new way to do
JIT compilation!

Keep a table of compiled templates (called stencils)
to “copy” into the code when needed

For information available later, keep “parameters”
that you can fill

“Patch” the parameter values in the stencil
Just-in-Time, and run

Refresher: Python uses bytecode

- O VW O N OULL b WN =

import dis

— =

def calculate(a, b):
result = a + b
return result

print("Output of dis.dis():")
dis.dis(calculate)
print()

Output of dis.dis():
4 0 RESUME

5 2 LOAD_FAST
4 LOAD_FAST
6 BINARY_OP
10 STORE_FAST

6 12 LOAD_FAST
14 RETURN_VALUE

0 (a)
1 (b)
0 ()
2 (resulrt)

2 (result)

Refresher: Python uses bytecode

replicate(8) pure inst(LOAD_FAST, (-- value)) {
assert(!PyStackRef_IsNull(GETLOCAL(oparg)));
value = PyStackRef_DUP(GETLOCAL(oparg));

GETLOCAL(oparg) = PyStackRef_NULL;

____________ {
u1nt32_t opargl oparg >> 4;

uint32_t oparg2 = oparg & 15;
valuel = PyStackRef_DUP(GETLOCAL(
value2 = PyStackRef_DUP(GETLQCAL (oparg2));

pure instdLOAD_CONST: (—— value)) {

value = PyStackRef_FromPyObjectNew(GETITEM(FRAME_CO_CONSTS, oparg));

=

This is what your Python
code compiles 1o)

1. Table of Compiled Templates

replicate(8) pure inst(LOAD_FAST, (—— value)) {
assert(!PyStackRef_IsNull(GETLOCAL(oparg)));

value = PyStackRef_DUP(GETLOCAL(oparg)); :
) entry in table

'inst (LOAD_FAST_AND_CLEAR, (—— value)) {

value = GETLOCAL(oparg);

// do not use SETLOCAL here, it decrefs the old value
GETLOCAL(oparg) = PyStackRef_NULL;

__

1inst (LOAD_FAST_LOAD_FAST, (—— valuel, value2)) {
uint32_t opargl = oparg >> 4;

uint32_t oparg2 = oparg & 15;
valuel = PyStackRef_DUP(GETLOCAL(opargl));
value2 = PyStackRef_DUP(GETLOCAL (oparg2));

pure inst(LOAD_CONST, (-—- value)) {
value = PyStackRef_FromPyObjectNew(GETITEM(FRAME_CO_CONSTS, oparg));
}

When building with
--enable-experimental-jit

C code for bytecode
execution is copied. This C
code is then built into a
shared library.

cpython/Python/bytecodes.c at main

https://github.com/python/cpython/blob/main/Python/bytecodes.c

2. Leaving blanks for parameters

0000000000000000 <__ JIT_ENTRY>:

pushqg S%rbp

mov(q %rsp, %rbp

movq (%rdi), %rax
movq 0x28(%rax), %rax

movabsq $0x0, Srcx
000000000000000d: X86_64_RELOC_UNSIGNED
movzwl S%CX, %ecx

movq 0x28(%rax,%rcx,8), %rax
mov 1 Oxc(%rax), %ecx

incl %eCcxX

je 0x3d <__JIT_ENTRY+0x3d>
mov(q %0S:0x0, %r8

cmpq (%srax), %r8

jne 0x37 <__JIT_ENTRY+0x37>
mov 1 %ecx, 0xc(%rax)

jmp 0x3d <__JIT_ENTRY+0x3d>
lock

addq $0x4, 0x10(%rax)

movq %rax, (%rsi)

addq $0x8, %rsi
movabsq $0x0, Srax
0000000000000046: X86_64_RELOC_UNSIGNED

popq %rbp
jmpq *%srax

__JIT_OPARG

__JIT_CONTINUE

For variables determined at
runtime, code is compiled with
those parameters left as ©

All of the machine code is then
stored as a sequence of bytes
in the file jit_stencil.h which
is automatically generated by a
new build stage

The information of what goes is the blanks is available from the runtime!

3. Patch and roll!

Why Copy-and-Patch?

Full JIT compilers convert op-codes to an IR, and
then machine code, and are not considered because
they're huge, slow, and-

- Java-based JITs for (GraalPy, and Jython) can
take up to 100 times longer to start than normal
CPython

- These implementation would also take upto 1GB
extra RAM!

“The WebAssembly compiler uses 1666 stencils taking 35
kB and the high-level compiler uses 98,831 stencils taking
17.5 MB”

Lesson: Copy-and-Patch compilation can be
used for fast compilation with minimal
memory overhead!

Interesting stuff that did not fit in

Appendix

Parallels between a processor and a VM

How does a real machine work?

Ufij Bilt back-end with a| sufficient stream of
IFetcn

1 0PS operations which it gets by decoding
IQueue instructions coming from memory.

L11s The goal of theLfront—end is to feed the

The front-end has two major pathways:
the |uOPs cache path| and the legacy
path—Tthe{legacy path| is the
traditional path whereby
variable-length x86 instructions are
fetched from the level 1 instruction
cache, queued, and consequently get
decoded into simpler, fixed-length

UOPs.

https://en.wikichip.org/w/index.php?title=front-end&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=decoding_instructions&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=decoding_instructions&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=%C2%B5OPs_cache&action=edit&redlink=1
https://en.wikichip.org/wiki/x86
https://en.wikichip.org/w/index.php?title=level_1_instruction_cache&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=level_1_instruction_cache&action=edit&redlink=1
https://en.wikichip.org/wiki/%C2%B5OPs
https://en.wikichip.org/wiki/%C2%B5OPs

Interpreted Languages

Now that we have a sense for a hardware
machine, it is easier to understand how one can
emulate an abstract machine in software

- Python

- Javascript
- SQL

- Java

There are many more, but we will talk about
these

The JVM Specification

Table of Contents

2.1. The class File Format
2.2. Data Types
2.3. Primitive Types and Values
2.3.1. Integral Types and Values
2.3.2. Floating-Point Types, Value Sets, and
Values
2.3.3. The returnAddress Type and Values
2.3.4. The boolean Type
2.4. Reference Types and Values
2.5. Run-Time Data Areas
2.5.1. The pc Register
2.5.2. Java Virtual Machine Stacks
2.5.3. Heap
2.5.4. Method Area
2.5.5. Run-Time Constant Pool
2.5.6. Native Method Stacks
2.6. Frames
2.6.1. Local Variables
2.6.2. Operand Stacks
2.6.3. Dynamic Linking
2.6.4. Normal Method Invocation Completion
2.6.5. Abrupt Method Invocation Completion
2.7. Representation of Objects
2.8. Floating-Point Arithmetic
2.8.1. Java Virtual Machine Floating-Point
Arithmetic and IEEE 754
2.8.2. Floating-Point Modes
2.8.3. Value Set Conversion
2.9. Special Methods
2.10. Exceptions
2.11. Instruction Set Summary
2.11.1. Types and the Java Virtual Machine
2.11.2. Load and Store Instructions
2.11.3. Arithmetic Instructions
2.11.4. Type Conversion Instructions
2.11.5. Object Creation and Manipulation

2.11.6. Operand Stack Management Instructions

2.11.7. Control Transfer Instructions

2.11.8. Method Invocation and Return Instructions

2.11.9. Throwing Exceptions
2.11.10. Synchronization
2.12. Class Libraries
2.13. Public Design, Private Implementation

Chapter 2. The Structure of
the Java Virtual Machine

Chapter 2. The Structure of the Java Virtual Machine

21

2.2

2.3

This document specifies an abstract machine. It does not describe any particular implementation of the Java Virtual Machine.

To implement the Java Virtual Machine correctly, you need only be able to read the class file format and correctly perform the operations specified therein. Implementation details that are not part of the Java
Virtual Machine's specification would unnecessarily constrain the creativity of implementors. For example, the memory layout of run-time data areas, the garbage-collection algorithm used, and any internal
optimization of the Java Virtual Machine instructions (for example, translating them into machine code) are left to the discretion of the implementor.

Al references to Unicode in this specification are given with respect to The Unicode Standard, Version 6.0.0, available at http://www.unicode.org/.

The class File Format

Compiled code to be executed by the Java Virtual Machine is represented using a hardware- and operating system-independent binary format, typically (but not necessarily) stored in a file, known as the
class file format. The class file format precisely defines the representation of a class or interface, including details such as byte ordering that might be taken for granted in a platform-specific object file
format.

Chapter 4, "The class File Format", covers the class file format in detail. Fu n faCt ! JVM d oes n ,t h ave a
native bool type

Like the Java programming language, the Java Virtual Machine operates on two kinds of types: primitive types and reference types. There are, correspondingly, two kinds of values that can be stored in
variables, passed as arguments, returned by methods, and operated upon: primitive values and reference values.

Data Types

The Java Virtual Machine expects that nearly all type checking is done prior to run time, typically by a compiler, and does not have to be done by the Java Virtual Machine itself. Values of primitive types need
not be tagged or otherwise be inspectable to determine their types at run time, or to be distinguished from values of reference instruction set of the Java Virtual Machine distinguishes its
operand types using instructions intended to operate on values of specific types. For instance, iadd, /add, fadd, and dadd are afyeva garmachine instructions that add two numeric values and produce
numeric results, but each is specialized for its operand type: int, long, float, and double, respectively. For a summary of type support in the Java Virtual Machine instruction set, see §2.11.1.

The Java Virtual Machine contains explicit support for objects. An object is either a dynamically allocated class instance or an array. A reference to an object is considered to have Java Virtual Machine type
reference. Values of type reference can be thought of as pointers to objects. More than one reference to an object may exist. Objects are always operated on, passed, and tested via values of type
reference.

Primitive Types and Values

The primitive data types supported by the Java Virtual Machine are the numeric types, the boolean type (§2.3.4), and the returnAddress type (§2.3.3).

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html

Aside: Java station! Hardware, running JavaOS

Brick Model

The first-generation brick model JavaStation computer includes the following features:
¢ microSPARC-II - The brick model JavaStation computer is equipped with a 100 MHz microSPARC-II processor.

¢ Scalable memory - The brick model includes 8-64 Mbytes DRAM (64-bit memory bus) and a PC-compatible memory system comprising four SIMM slots (2 logical banks, 2 SIMMs per bank). Memory size can be
increased by installing 4-Mbyte or 16-Mbyte SIMMs in the slots.

» Device connectors - Connectors for a PS2 mouse, a PS2 keyboard, and a 14-inch or 17-inch monitor are included.
 Serial port - A serial port enables local printing to a PostScript(TM) or PCLS printer.

¢ Power switch - The brick model includes a continuous contact, long life industrial grade rocker switch for power cycling. The power switch is located at the rear of the unit.

JavaStation Hardware

https://docs.oracle.com/cd/E19102-01/n3.0.srvr/805-5890-10/6j5ic0vpf/index.html

How does CPython execute?

How does CPython execute?

1. Tokenize the source code Parser/lexer/ and
Parser/tokenizer/.

2. Parse the stream of tokens into an Abstract
Syntax Tree Parser/parser.c.

3. Transform AST into an instruction sequence
Python/compile.c.

4. Construct a Control Flow Graph and apply
optimizations to it Python/flowgraph.c.

5. Emit bytecode based on the Control Flow Graph
Python/assemble.c.

https://github.com/python/cpython/blob/main/Parser/lexer/
https://github.com/python/cpython/blob/main/Parser/tokenizer/
https://github.com/python/cpython/blob/main/Parser/parser.c
https://github.com/python/cpython/blob/main/Python/compile.c
https://github.com/python/cpython/blob/main/Python/flowgraph.c
https://github.com/python/cpython/blob/main/Python/assemble.c

How does CPython execute?

The AST is generated from source code

— using _PyParser_ASTFromString() or

struct tok_state xtok;

Token sstokens; _PyParser_ASTFromFile()

int mark;

int fill, size; struct assembler {

PyArena xarena; PyObject xa_bytecode; /x bytes containing bytecode */

KeywordToken *xxkeywords;
char *xksoft_keywords;
int n_keyword_lists;

int start_rule;

int *errcode;

int parsing_started;
PyObject* normalize;

int starting_lineno; H

int a_offset;

PyObject *a_except_table;
int a_except_table_off;
/* Location Info */

int a_lineno; /*
PyObject* a_linetable; /x*
int a_location_off; /*

/* offset into bytecode x/
/* bytes containing exception table */
/* offset into exception table */

lineno of last emitted instruction */
bytes containing location info */
offset of last written location info frame */

int starting_col_offset;
int error_indicator;
int flags;
int feature_version;
growable_comment_array type_ignore_comments;
Token xknown_err_token;
int level;
int call_invalid_rules;
int debug;
} Parser;

Parser/peg_api.c.
After some checks, a helper function in
Parser/parser.c begins applying

production rules

https://github.com/python/cpython/blob/main/Parser/peg_api.c
https://github.com/python/cpython/blob/main/Parser/parser.c

Peeking into CPython: ‘ast module

Literals

class ast.Constant(value)
A constant value. The value attribute of the Constant literal contains the Python object it represents.
The values represented can be simple types such as a number, string or None, but also immutable con-
tainer types (tuples and frozensets) if all of their elements are constant.

>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4)) >>>

Expression(
body=Constant(value=123))

class ast.FormattedValue(value, conversion, format_spec)

Node representing a single formatting field in an f-string. If the string contains a single formatting field and
nothing else the node can be isolated otherwise it appears in JoinedStr.

¢ value is any expression node (such as a literal, a variable, or a function call).
e conversion is an integer:

o -1: no formatting

o 115: !s string formatting

o 114: !'r repr formatting

o 97: la ascii formatting

« format_spec isa JoinedStr node representing the formatting of the value, or None if no format
was specified. Both conversion and format_spec can be set at the same time.

ast is a module
in the python
standard
library.

Python codes
need to be
converted to an
Abstract Syntax
Tree (AST)

‘ast module: Grammar for Python

—— BoolOp() can use left & right?
BoolOp(boolop op, expr* values)
NamedExpr(expr target, expr value)
BinOp(expr left, operator op, expr right)
UnaryOp (unaryop op, expr operand)
Lambda(arguments args, expr body)
IfExp(expr test, expr body, expr orelse)

expr =
|
|
|
|
|
| Dict(expr* keys, expr* values)
|
|
|
|
|

ast — Abstract Syntax Trees — Python
3.12.4 documentation

Set(expr* elts)

ListComp(expr elt, comprehensionx generators)

SetComp (expr elt, comprehension* generators)
DictComp(expr key, expr value, comprehension* generators)
GeneratorExp(expr elt, comprehension* generators)

—— the grammar constrains where yield expressions can occur
stmt = FunctionDef(identifier name, arguments args, | Await(expr value)
stmt+ body, expr* decorator_list, expr? returns, | Yield(expr? value)
string? type_comment, type_param+ type_params) | YieldFrom(expr value) .
| AsyncFunctionDef(identifier name, arguments args, —- need sequences for compare to distinguish between
stmt+ body, expr+ decorator_list, expr? returns, = e =S el (esd) = s

. Compare(expr left, cmpop* ops, exprx comparators)
string? type_comment, type_param+ type_params) P P pop* op P P

Call(expr func, expr* args, keyword* keywords)

|

|

| FormattedValue(expr value, int conversion, expr? format_spec)
| ClassDef(identifier name,
|

JoinedStr(expr+ values)
expr* bases,

Constant(constant value, string? kind)

keyword+ keywords
st%¥* body,yw ! expr_context = Load | Store | Del

expr* decorator_list,
type_param+ type_params)

| Return(expr? value) operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift
| RShift | BitOr | BitXor | BitAnd | FloorDiv

boolop = And | Or

| Delete(expr+ targets)

| Assign(expr* targets, expr value, string? type_comment) unaryop = Invert | Not | UAdd | USub
| TypeAlias(expr name, type_param+ type_params, expr value)

| AugAssign(expr target, operator op, expr value)

— 'simple' indicates that we annotate simple name without parens
| AnnAssign(expr target, expr annotation, expr? value, int simple)

cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn

comprehension = (expr target, expr iter, expr*x ifs, int is_async)

https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html

‘ast module: types for nodes

ast — Abstract Syntax Trees — Python
3.12.4 documentation

class ast.FunctionType(argtypes, returns)

A representation of an old-style type comments for functions, as Python versions prior to 3.5 didn't support
PEP 484 annotations. Node type generated by ast.parse() when mode is " func_type".

Such type comments would look like this:

def sum_two_number(a, b):

class ast.Module(body, type_ignores)
A Python module, as with file input. Node type generated by ast.parse() in the default "exec" mode.

bodyis a list of the module's Statements.
type_ignores is a list of the module’s type ignore comments; see ast.parse() for more details.

>>> print(ast.dump(ast.parse('x = 1'), indent=4))

type: (int, int) —> int
return a + b

argtypes is a List of expression nodes.

returns is a single expression node.

>>> print(ast.dump(ast.parse('(int, str) —> List[int]', mode='func_type'), ind@

>>>1| FunctionType(
Module(argtypes=[
body=[Name(id='int', ctx=Load()),
Assign(Name(id='str', ctx=Load())],

targets=[
Name (id='x"', ctx=Store())],
value=Constant(value=1))1,
type_ignores=[])

returns=Subscript(
value=Name(id="'List', ctx=Load()),
slice=Name(id='int', ctx=Load()),
ctx=Load()))

class ast.Expression(body)

Expression(

A single Python expression input. Node type generated by ast.parse() when modeis "eval".

body is a single node, one of the expression types.

>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4))

body=Constant(value=123))

>>>

https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html

Peeking into CPython: dis the Python disassembler

class dis.Instructiongq
Details for a bytecode operation

opcode

numeric code for operation, corresponding to the opcode values listed below and the bytecode values

dis.dis(x=None, %, file=None, depth=None, show_caches=False, adaptive=False) inlthe Opcode collctions:

Disassemble the x object. x can denote either a module, a class, a method, a function, a generator, an asyn-
chronous generator, a coroutine, a code object, a string of source code or a byte sequence of raw bytecode.
For a module, it disassembles all functions. For a class, it disassembles all methods (including class and sta-
tic methods). For a code object or sequence of raw bytecode, it prints one line per bytecode instruction. It arg

also recursively disassembles nested code objects. These can include generator expressions, nested func- numeric argument to operation (if any), otherwise None
tions, the bodies of nested classes, and the code objects used for annotation scopes. Strings are first com-
piled to code objects with the compile() built-in function before being disassembled. If no object is pro-
vided, this function disassembles the last traceback.

opname

human readable name for operation

argval
resolved arg value (if any), otherwise None
argrepr

The disassembly is written as text to the supplied file argument if provided and to sys. stdout otherwise. o
human readable description of operation argument (if any), otherwise an empty string.

The maximal depth of recursion is limited by depth unless it is None. depth=0 means no recursion. Unary operations

: . ; T T : . o Unary operations take the top of the stack, apply the operation, and push the result back on the stack.
If show caches is True, this function will display inline cache entries used by the interpreter to specialize ik 2 e & B

the bytecode. UNARY_NEGATIVE
Implements STACK[-1] = -STACK[-1].
If adaptive is True, this function will display specialized bytecode that may be different from the original

UNARY_NOT

Implements STACK[-1] = not STACK[-1].

UNARY_INVERT
Implements STACK[-1] = ~STACK[-1].

GET_ITER
Implements STACK[-1] = iter(STACK[-1]).

GET_YIELD_FROM_ITER
If STACK[-11] is a generator iterator or coroutine object it is left as is. Otherwise, implements STACK[-1] =
iter(STACK[-11).

