
Just In Time Compilation

Mainack Mondal
Sandip Chakraborty

CS 60203
Autumn 2024

Today’s class

- Interpreted Languages, and VMs
- Why Interpreters?
- Interpreters can be slow :(

- What is Just-In-Time compilation?
- To JIT, or not to JIT
- Startup-time vs Execution-time tradeoff
- Memory Requirements tradeoff

- How to design a JIT Compiler?
- Case study 1: V8 JIT Explained
- Case study 2: Copy-and-Patch in CPython JIT

Interpreted Languages and VMs

Compiled languages are a bottleneck

Compilation of source code into object code by
the compiler

- Wikipedia

(…why not say machine code?)

Compiled languages are a bottleneck

Compilation of source code into object code by
the compiler

- Wikipedia

(…why not say machine code?)

Solution: interpreted languages (Python, Java…)

What is an Interpreter? -Wikipedia

In computer science, an interpreter is a
computer program that directly executes
instructions written in a programming or
scripting language, without requiring them
previously to have been compiled into a machine
language program

- Wikipedia

What is an Interpreter? -Theory people

An interpreter/VM is a program that consumes a
series of instructions, and executes them
against an abstract machine

Essentially VM emulates an abstract machine,
and the behavior of the abstract machine itself
is specified, for operations, and operands

Why (do we need) an Interpreter?

 -Systems people

...they make life easy :)

As implementing certain features becomes
simpler!

Why Interpreters?

- Platform Independence
- Reflection (we’ll talk about this)

- Dynamic Typing (i.e. finding and/or changing types at runtime)

- Easy debugging and profiling
- Easier concurrency (concurrency is never easy)

- Small program size
- Automatic memory management (already talked about this)

Why Interpreters?

Platform Independence
Case #1 for interpreted languages

Compiler: Platform dependent code :((

x86 ARM

https://godbolt.org/z/YbMebMo47

Even the square function changes :(

https://godbolt.org/z/YbMebMo47

Interpreter: Platform independent code :)

Java bytecode is same everywhere :)

(…but what is bytecode?)

More runtime type-information => Powerful
features, and safety

Case #2 for interpreted languages

Runtime Type Information

Type Information can be
stored as actual object
in the language runtime!

Allows for dynamic types,
dynamic dispatch,and
reflection (among other
things)

Type Objects — Python 3.12.4 documentation

https://docs.python.org/3/c-api/type.html#c.PyTypeObject

Reflection

Essentially source code
that “introspects” /
”manipulates” source
code

getting the methods, using a method

Reflection in C++ is hard!

Why does C++ not have
reflection? - Stack
Overflow

https://stackoverflow.com/questions/359237/why-does-c-not-have-reflection
https://stackoverflow.com/questions/359237/why-does-c-not-have-reflection
https://stackoverflow.com/questions/359237/why-does-c-not-have-reflection

Reflection in C++ is hard…but not impossible!

Reflection for C++26

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2996r0.html

Additional runtime accessible information, and
instrumentation

Case #3 for interpreted languages

Runtime Info: Code as a runtime object
Interpreted
languages (can)
contain code as a
runtime object too!

For example, Python
has PyCodeObject,
that “wraps” the
bytecode

This is from
Python/assemble.c

https://github.com/python/cpython/blob/main/Python/assemble.c

PyCodeObject, Docs

Code Objects —
Python 3.12.4
documentation

https://docs.python.org/3/c-api/code.html
https://docs.python.org/3/c-api/code.html
https://docs.python.org/3/c-api/code.html

Instrumentation!

Runtime information is
valuable to find if
something unexpected
happened

Or how often variables /
functions are used /
executed

Recall, instrumentation

Python runtime also has
instrumentation using
Py*_Monitors

https://github.com/python/cpython/blob/main/Include/cpython/code.h

- Easier debugging, and program state inspection
- Simple to implement line-by-line profiling
- Simple to implement instrumentation
- (Spoiler) Just In Time Compilation!

Benefits from keeping code at runtime?

Interpreters nice
Takeaway….

Interpreters can be slow :(
The issue…

Let’s compare Python and C?
NO
Because its apples to oranges

Compare CPython with Cython

 - Cython uses (largely)the same syntax as CPython
 - Cython compiles CPython into C, using C/Python
 API and then compiles C, and the executes!

Interpreter vs. Compiler

https://docs.python.org/3/c-api/
https://docs.python.org/3/c-api/

Matrix multiplication: CPython

Matrix multiplication: Cython (simple compilation)

Direct compilation is (only) 1.15x faster
- lookup produces pointer to Python object
- and PyNumber_Multiply being used for PyObject

The situation gets way worse…
Interpreters get 700x slower …

Type generality prevents optimization!
Reason #1

Matrix multiplication: Cython, machine types

180-190x faster than CPython!

Bounds checking is slow :(

Interpreters can’t optimize out bounds checks!

(security bros get mad)

Reason #2

Matrix multiplication: Cython, no bounds check

700-800x faster!

bounds check removed

Today’s class

- Interpreted Languages, and VMs
- Why Interpreters?
- Interpreters can be slow :(

- What is Just-In-Time compilation?
- To JIT, or not to JIT
- Startup-time vs Execution-time tradeoff
- Memory Requirements tradeoff

- How to design a JIT Compiler?
- Case study 1: V8 JIT Explained
- Case study 2: Copy-and-Patch in CPython JIT

What is Just-in-Time compilation?

What is Just-in-Time compilation?

Just-In-Time compilation is compilation (of
computer code) during execution of a program
(at run time) rather than before execution

This may consist of source code translation
but is more commonly bytecode translation to
machine code, which is then executed
directly.

- Wikipedia

Refresher: Code as a runtime object
Interpreted
languages (can)
contain code as a
runtime object too!

For example, Python
has PyCodeObject,
that “wraps” the
bytecode

This is from
Python/assemble.c

https://github.com/python/cpython/blob/main/Python/assemble.c

What is Just-in-Time compilation?

compiled code executes

code gets interpreted

compiled code executes<compilation>

<compilation>

JIT Compiled

Interpreted

Compilation

Just-in-Time compilation involves conversion of
(a part of) source/bytecode into machine code at
runtime (and not in advance)

To JIT, or not to JIT

code gets interpreted

compiled code executes<compilation> JIT Compiled

Interpreted

Interpreted languages get executed line-by-line (or
instruction-by-instructions) hence it is possible to
only compile parts of the code and interpret the rest

Some
heuristic

no

yes

Startup-time vs Execution time tradeoff

compiled code executes<compilation>

Start-up time is the time taken by the JIT compiler to
produce the machine code
Execution time is time taken by the machine code to
execute

Some
heuristic

no

yes

compiled code executes<compilation>

startup-time execution-time

Startup-time vs Execution time tradeoff

The trade-off exists because it is possible to use
sophisticated compilers to produce optimized machine
code.

But such compilers would be slow to produce the
machine code.

Remember code objects? They also take up space :(

V8 heap usage by code-objects

V8: Hooking up the Ignition to
the Turbofan

https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing
https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing

Memory requirements tradeoff

- Code objects take up space.
- Compilers that produce unoptimized code fast,

produce a lot of code.
- Compilers that produce optimized code are too slow

to run in user facing scenarios :(

Today’s class

- Interpreted Languages, and VMs
- Why Interpreters?
- Interpreters can be slow :(

- What is Just-In-Time compilation?
- Startup-time vs Execution-time tradeoff
- Memory Requirements tradeoff

- How to design a JIT Compiler?
- Case study 1: V8 JIT Explained
- Case study 2: Copy-and-Patch in CPython JIT

How to design a JIT Compiler?

Refresher: Compilation Approaches

baseline compilers

bytecode assemblers

Refresher: Compilation Approaches

- Most databases go by the
bytecode route

- Python also goes the
bytecode route

This is because writing
bytecode assemblers is easier
than baseline compilers

V8 JIT Explained

V8- 2007

V8- 2010

V8- 2010
They added optimizing
compiler

Deoptimizer because, optimized
code isn’t always the best

V8- 2015

Older, and simpler V8

A great summary of
the history of V8
architecture, because
it can be confusing

V8: Hooking up
the Ignition to
the Turbofan

https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing
https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing
https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing

Older, and simpler V8

JavaScript Source

Full code-gen
(Unoptimized machine

code)

TurboFan-CrankShaft
(Optimizing
compiler)

Hot path?
no

continuous analysis = runtime info

yes

Hot path: executes often

1. Can find from runtime info!
2. Initially all paths are cold

Takeaway: Start up time vs execution time
trade-off

V8 uses a “dumb” full code-gen to generate code fast,
hence leading to slower code, but faster execution time!

Problem: Optimizing compilers are slow :((

baseline code run optimizing compilercheck for
hot path optimized code

user facing latency

Solution: Optimizing compilers on another thread

baseline code

run optimizing compiler

check for
hot path optimized codebaseline code

send to
another
thread

user facing latency

swap
code

Even better: Profiling and Optimizing on other thread(s)

run optimizing compiler

check for hot
path

optimized codebaseline code

send to
optimizer

thread

swap
code

profiler thread

main thread

optimizing
thread

Even better: Profiling and Optimizing on other thread(s)

run optimizing compiler

check for hot
path

optimized codebaseline code

send to
optimizer

thread

swap
code

profiler thread

main thread

optimizing
thread

we can use a
queue for this

this is just a
pointer swap

Code object is submitted to a DispatcherQueue
// Circular queue of incoming
recompilation tasks (including OSR).
class V8_EXPORT
OptimizingCompileDispatcherQueue {

private:
…
TurbofanCompilationJob** queue_;
int capacity_;
int length_;
int shift_;
base::Mutex mutex_;

};

https://chromium.googlesource.c
om/v8/v8.git/+/refs/heads/main/
src/compiler-dispatcher/optimiz
ing-compile-dispatcher.h

https://chromium.googlesource.com/v8/v8.git/+/refs/heads/main/src/compiler-dispatcher/optimizing-compile-dispatcher.h
https://chromium.googlesource.com/v8/v8.git/+/refs/heads/main/src/compiler-dispatcher/optimizing-compile-dispatcher.h
https://chromium.googlesource.com/v8/v8.git/+/refs/heads/main/src/compiler-dispatcher/optimizing-compile-dispatcher.h
https://chromium.googlesource.com/v8/v8.git/+/refs/heads/main/src/compiler-dispatcher/optimizing-compile-dispatcher.h

Code object is submitted to a DispatcherQueue

// Circular queue of incoming recompilation tasks (including OSR).
class V8_EXPORT OptimizingCompileDispatcherQueue {
public:
…
explicit OptimizingCompileDispatcherQueue(int capacity)
: capacity_(capacity), length_(0), shift_(0) {

queue_ = NewArray<TurbofanCompilationJob*>(capacity_);
}
~OptimizingCompileDispatcherQueue() { DeleteArray(queue_); }
TurbofanCompilationJob* Dequeue();
void Enqueue(TurbofanCompilationJob* job);
void Flush(Isolate* isolate);
void Prioritize(Tagged<SharedFunctionInfo> function);

basic queue ops

Takeaway: Optimization compilers can be run
in other threads

V8 moved optimizing compiler to another thread, and
only did a “dumb” full code-gen in the main thread

Recall: Machine code takes memory :((

V8 heap usage by code-objects

V8: Hooking up the Ignition to
the Turbofan

https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing
https://docs.google.com/presentation/d/1chhN90uB8yPaIhx_h2M3lPyxPgdPmkADqSNAoXYQiVE/edit?usp=sharing

Problem: V8 Engine memory issues
- The V8 JavaScript Engine used to do a `full

code-gen`, using the baseline compiler,
generating non-optimized machine code fast

- JITed machine code can consume a significant
amount of memory, even if the code is only
executed once

Solution: Bytecode interpreter instead of full code-gen

- Bytecode is between 50% to 25% the size of
the equivalent baseline machine code.

- Bytecode is executed by Ignition which
yields execution speeds on real-world
websites close to those of code generated by
V8’s existing baseline compiler

Introducing Interpreter: Less simple V8

Firing up the
Ignition interpreter

https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/ignition-interpreter

Finally in 2017

Firing up the
Ignition interpreter

https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/ignition-interpreter

Takeaway: Memory requirement of machine
code is a trade-off

Copy-and-Patch: CPython JIT

Copy-and-Patch -The paper

Copy-and-Patch -Systems people

Relatively recent research work on a new way to do
JIT compilation!

1. Keep a table of compiled templates (called stencils)
to “copy” into the code when needed

2. For information available later, keep “parameters”
that you can fill

3. “Patch” the parameter values in the stencil
Just-in-Time, and run

Refresher: Python uses bytecode

Refresher: Python uses bytecode

This is what your Python
code compiles to :)

1. Table of Compiled Templates

When building with
--enable-experimental-jit

C code for bytecode
execution is copied. This C
code is then built into a
shared library.

cpython/Python/bytecodes.c at main

entry in table

https://github.com/python/cpython/blob/main/Python/bytecodes.c

2. Leaving blanks for parameters

For variables determined at
runtime, code is compiled with
those parameters left as 0

All of the machine code is then
stored as a sequence of bytes
in the file jit_stencil.h which
is automatically generated by a
new build stage

3. Patch and roll!

The information of what goes is the blanks is available from the runtime!

Why Copy-and-Patch?

Full JIT compilers convert op-codes to an IR, and
then machine code, and are not considered because
they’re huge, slow, and-

- Java-based JITs for (GraalPy, and Jython) can
take up to 100 times longer to start than normal
CPython

- These implementation would also take upto 1GB
extra RAM!

Lesson: Copy-and-Patch compilation can be
used for fast compilation with minimal
memory overhead!

“The WebAssembly compiler uses 1666 stencils taking 35
kB and the high-level compiler uses 98,831 stencils taking
17.5 MB”

Appendix
Interesting stuff that did not fit in

Parallels between a processor and a VM

How does a real machine work?

The goal of the front-end is to feed the
back-end with a sufficient stream of
operations which it gets by decoding
instructions coming from memory.

The front-end has two major pathways:
the µOPs cache path and the legacy
path. The legacy path is the
traditional path whereby
variable-length x86 instructions are
fetched from the level 1 instruction
cache, queued, and consequently get
decoded into simpler, fixed-length
µOPs.

https://en.wikichip.org/w/index.php?title=front-end&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=decoding_instructions&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=decoding_instructions&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=%C2%B5OPs_cache&action=edit&redlink=1
https://en.wikichip.org/wiki/x86
https://en.wikichip.org/w/index.php?title=level_1_instruction_cache&action=edit&redlink=1
https://en.wikichip.org/w/index.php?title=level_1_instruction_cache&action=edit&redlink=1
https://en.wikichip.org/wiki/%C2%B5OPs
https://en.wikichip.org/wiki/%C2%B5OPs

Interpreted Languages

Now that we have a sense for a hardware
machine, it is easier to understand how one can
emulate an abstract machine in software

- Python
- Javascript
- SQL
- Java
…
There are many more, but we will talk about
these

The JVM Specification

Fun fact! JVM doesn’t have a
native bool type

Chapter 2. The Structure of
the Java Virtual Machine

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html

Aside: Java station! Hardware, running JavaOS

JavaStation Hardware

https://docs.oracle.com/cd/E19102-01/n3.0.srvr/805-5890-10/6j5ic0vpf/index.html

How does CPython execute?

How does CPython execute?

1. Tokenize the source code Parser/lexer/ and
Parser/tokenizer/.

2. Parse the stream of tokens into an Abstract
Syntax Tree Parser/parser.c.

3. Transform AST into an instruction sequence
Python/compile.c.

4. Construct a Control Flow Graph and apply
optimizations to it Python/flowgraph.c.

5. Emit bytecode based on the Control Flow Graph
Python/assemble.c.

https://github.com/python/cpython/blob/main/Parser/lexer/
https://github.com/python/cpython/blob/main/Parser/tokenizer/
https://github.com/python/cpython/blob/main/Parser/parser.c
https://github.com/python/cpython/blob/main/Python/compile.c
https://github.com/python/cpython/blob/main/Python/flowgraph.c
https://github.com/python/cpython/blob/main/Python/assemble.c

How does CPython execute?
The AST is generated from source code
using _PyParser_ASTFromString() or
_PyParser_ASTFromFile()

Parser/peg_api.c.
After some checks, a helper function in
Parser/parser.c begins applying
production rules

https://github.com/python/cpython/blob/main/Parser/peg_api.c
https://github.com/python/cpython/blob/main/Parser/parser.c

Peeking into CPython: `ast` module

ast is a module
in the python
standard
library.

Python codes
need to be
converted to an
Abstract Syntax
Tree (AST)

`ast` module: Grammar for Python

ast — Abstract Syntax Trees — Python
3.12.4 documentation

https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html

`ast` module: types for nodes

ast — Abstract Syntax Trees — Python
3.12.4 documentation

https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html

Peeking into CPython: `dis` the Python disassembler

