
Design Optimization of Computing Systems

Autumn Semester 2024

Assignment 2: Introduction to PintOS and improving threads in PintOS
Assignment given on: 26/09/2024

Assignment deadline: 16/10/2024

PintOS (Ben Pfaff et al.) [http://pintos-os.org/SIGCSE2009-Pintos.pdf] is a popular
minimal operating used at many Universities – in India and overseas – to train students
in the internal details of the Unix-like operating systems. PintOS is minimal since many
OS capabilities are missing and you will be asked to implement them by modifying the
codebase.

The primary document that we use in this subject was originally written at Stanford
University [https://web.stanford.edu/class/cs140/projects/pintos/pintos.pdf]. The
more detailed version of PintOS and the projects used in Stanford is here:
https://web.stanford.edu/class/cs140/projects/pintos/pintos.html (This should suffice
to give you a basic overview of PintOS).

This warming-up assignment has two parts: In the first one we ask you to install pintOS
on a virtual machine with all the dependencies. In the second one we ask you to improve
the thread implementation supported by PintOS.

Part-1: Installation of PintOS

We can install PintOS in many operating systems (like Windows, linux, mac) with slightly
different set-up instructions for each platform. We are giving the instructions for a Linux
based systems

● Please follow the steps described in this github link.

Part 2: Implement an Alarm clock (80 marks)

Problem description:
By default, PintOS kernel provides busy waiting when a thread needs to block.
You need to change the behavior and block the thread till a fixed amount of timer
ticks pass. You will work primarily in the “threads” directory of the PintOS
distribution.

Before you start coding, go through this link:
https://web.stanford.edu/class/cs140/projects/pintos/pintos_2.html#SEC18 . it
will provide you an understanding of the gist and functionalities of each relevant
file.

Task:
Reimplement timer_sleep(), defined in devices/timer.c. Currently the
implementation "busy waits" that is it spins in a loop checking the current time
and calling thread_yield() until enough time has gone by. Here is the description
of the function.

Function: void timer_sleep (int64_t ticks)

https://web.stanford.edu/class/cs140/projects/pintos/pintos.html
https://github.com/Kronos-192081/pintos
https://web.stanford.edu/class/cs140/projects/pintos/pintos_2.html#SEC18


Suspends execution of the calling thread until time has advanced by at least x
timer ticks. Unless the system is otherwise idle, the thread need not wake up
after exactly x ticks. Just put it on the ready queue after they have waited for the
right amount of time.

Reimplement the function to avoid busy waiting.

Part 3: Implementing a wakeup thread (40 marks)

This assignment is an extension of previous assignment where you improved the thread
implementation supported by PintOS. Specifically, in the previous assignment you
improved the timer_sleep(), defined in devices/timer.c and avoided busy waiting. Now a
kernel scheduler needs to ensure fairness and performance.

The performance requirement ensures that the periodic requirement of determining the
resources used by each thread and changing the thread priorities to reflect the cpu usage
is efficient. Fairness criteria ensures that threads with similar demand on the resources
get similar access to the processor time. So, your lower priority threads should not miss
the processor time completely.

To that end, while removing the busy wait some of you might have already created a
separate wakeup thread (Of course you might have completed the assignment without
the wakeup thread too). However, we are providing a sketch using which you can create
the wakeup thread below. This assignment depends on mechanisms similar to the
wakeup thread.

The sole purpose of the wakeup thread is to unblock the threads blocked on alarms. The
thread becomes active when the current time (timer tick count) matches the wakeup
time for the (next) earliest wakeup time of a sleeping thread. The thread will unblock all
threads in the waiting-for-timer-alarm queue (let’s call it sleepers) with the same
wakeup time as the current time.

Wakeup thread then uses list sleepers to determine the wakeup time for its next action.
The thread can then block itself until the time is determined for the next wakeup phase.
Function thread_tick() will unblock this wakeup thread at the right time.

Since the wakeup thread is a managerial thread and not among the threads in list
sleepers, its action code is simple and very easy to write. Interference or likely parallel
access to the list of waiting threads is avoided by ensuring that the (wakeup) thread is
non-preemptive and has high priority. One advantage of this is that we do not have to
disable interrupts while the threads waiting for timer alarms are being unblocked. Once
created the thread enters an infinite loop, where it is blocked to be woken up when some
sleeping threads are to be unblocked from their timer wait. It will insert the released
threads in ready_list and block itself again.

In this arrangement, threads call timer_sleep() to begin waiting for the timer alarm. All
these threads are inserted in sorted list sleepers. However, the wakeup managerial
thread calls a separate function (timer_wakeup()) to unblock the waiting threads.

Your task is to implement the wakeup thread-based modification of the previous assignment,
where the wakeup just unblocks a sleeping thread when it’s time to wake it up.



Submission Guideline:
You need to upload a zip containing the files you changed along with a design
document in Moodle. There should be one submission from each group. Name
your zip file as “Assgn2_<rollno>.zip”. The zip file should contain:

● The files that you changed.
● A design document. You can find the template for design document here:

https://web.stanford.edu/class/cs140/projects/pintos/threads.tmpl.
Fill it up according to your implementation and include it in your zip file.

Grading scheme for part 2:

The total marks for this part of the assignment (80 marks) is divided as follows.

Demo the implementation to your assigned TAs and show that your
code works as intended

30marks

During demo you need to demonstrate that you have indeed
implemented the algorithm promised in the design document

50marks

Grading scheme for part 3:

The total marks for this part of the assignment (40 marks) is divided as follows.

Demo the implementation to your assigned TAs and show that your
code works as intended

10marks

During demo you need to demonstrate that you have indeed
implemented the algorithm promised in the design document

30marks

https://web.stanford.edu/class/cs140/projects/pintos/threads.tmpl

